478 research outputs found

    Low power two-channel PR QMF bank using CSD coefficients and FPGA implementation

    Get PDF
    Finite impulse response (FIR) filter is a fundamental component in digital signal processing. Two-channel perfect reconstruction (PR) QMF banks are widely used in many applications, such as image coding, speech processing and communications. A practical lattice realization of two-channel QMF bank is developed in this thesis for dealing with the wide dynamic range of intermediate results in lattice structure. To achieve low complexity and low power consumption of two-channel perfect reconstruction QMF bank, canonical signed digit (CSD) number system is used for representing lattice coefficients in FPGA implementation. Utilization of CSD number system in lattice structures leads to more efficient hardware implementation. Many fixed-point simulations were done in Matlab in order to obtain the proper fixed-point word-length for different signals. Finally, FPGA implementation results show that perfect reconstruction signal is obtained by using the proposed method. Furthermore, the power consumption using CSD number system for representing lattice coefficients is less than that obtained by using two\u27s complement number system in two-channel QMF bank. A low complexity and low power two-channel PR QMF bank using CSD coefficients was realized

    Dirty RF Signal Processing for Mitigation of Receiver Front-end Non-linearity

    Get PDF
    Moderne drahtlose Kommunikationssysteme stellen hohe und teilweise gegensätzliche Anforderungen an die Hardware der Funkmodule, wie z.B. niedriger Energieverbrauch, große Bandbreite und hohe Linearität. Die Gewährleistung einer ausreichenden Linearität ist, neben anderen analogen Parametern, eine Herausforderung im praktischen Design der Funkmodule. Der Fokus der Dissertation liegt auf breitbandigen HF-Frontends für Software-konfigurierbare Funkmodule, die seit einigen Jahren kommerziell verfügbar sind. Die praktischen Herausforderungen und Grenzen solcher flexiblen Funkmodule offenbaren sich vor allem im realen Experiment. Eines der Hauptprobleme ist die Sicherstellung einer ausreichenden analogen Performanz über einen weiten Frequenzbereich. Aus einer Vielzahl an analogen Störeffekten behandelt die Arbeit die Analyse und Minderung von Nichtlinearitäten in Empfängern mit direkt-umsetzender Architektur. Im Vordergrund stehen dabei Signalverarbeitungsstrategien zur Minderung nichtlinear verursachter Interferenz - ein Algorithmus, der besser unter "Dirty RF"-Techniken bekannt ist. Ein digitales Verfahren nach der Vorwärtskopplung wird durch intensive Simulationen, Messungen und Implementierung in realer Hardware verifiziert. Um die Lücken zwischen Theorie und praktischer Anwendbarkeit zu schließen und das Verfahren in reale Funkmodule zu integrieren, werden verschiedene Untersuchungen durchgeführt. Hierzu wird ein erweitertes Verhaltensmodell entwickelt, das die Struktur direkt-umsetzender Empfänger am besten nachbildet und damit alle Verzerrungen im HF- und Basisband erfasst. Darüber hinaus wird die Leistungsfähigkeit des Algorithmus unter realen Funkkanal-Bedingungen untersucht. Zusätzlich folgt die Vorstellung einer ressourceneffizienten Echtzeit-Implementierung des Verfahrens auf einem FPGA. Abschließend diskutiert die Arbeit verschiedene Anwendungsfelder, darunter spektrales Sensing, robuster GSM-Empfang und GSM-basiertes Passivradar. Es wird gezeigt, dass nichtlineare Verzerrungen erfolgreich in der digitalen Domäne gemindert werden können, wodurch die Bitfehlerrate gestörter modulierter Signale sinkt und der Anteil nichtlinear verursachter Interferenz minimiert wird. Schließlich kann durch das Verfahren die effektive Linearität des HF-Frontends stark erhöht werden. Damit wird der zuverlässige Betrieb eines einfachen Funkmoduls unter dem Einfluss der Empfängernichtlinearität möglich. Aufgrund des flexiblen Designs ist der Algorithmus für breitbandige Empfänger universal einsetzbar und ist nicht auf Software-konfigurierbare Funkmodule beschränkt.Today's wireless communication systems place high requirements on the radio's hardware that are largely mutually exclusive, such as low power consumption, wide bandwidth, and high linearity. Achieving a sufficient linearity, among other analogue characteristics, is a challenging issue in practical transceiver design. The focus of this thesis is on wideband receiver RF front-ends for software defined radio technology, which became commercially available in the recent years. Practical challenges and limitations are being revealed in real-world experiments with these radios. One of the main problems is to ensure a sufficient RF performance of the front-end over a wide bandwidth. The thesis covers the analysis and mitigation of receiver non-linearity of typical direct-conversion receiver architectures, among other RF impairments. The main focus is on DSP-based algorithms for mitigating non-linearly induced interference, an approach also known as "Dirty RF" signal processing techniques. The conceived digital feedforward mitigation algorithm is verified through extensive simulations, RF measurements, and implementation in real hardware. Various studies are carried out that bridge the gap between theory and practical applicability of this approach, especially with the aim of integrating that technique into real devices. To this end, an advanced baseband behavioural model is developed that matches to direct-conversion receiver architectures as close as possible, and thus considers all generated distortions at RF and baseband. In addition, the algorithm's performance is verified under challenging fading conditions. Moreover, the thesis presents a resource-efficient real-time implementation of the proposed solution on an FPGA. Finally, different use cases are covered in the thesis that includes spectrum monitoring or sensing, GSM downlink reception, and GSM-based passive radar. It is shown that non-linear distortions can be successfully mitigated at system level in the digital domain, thereby decreasing the bit error rate of distorted modulated signals and reducing the amount of non-linearly induced interference. Finally, the effective linearity of the front-end is increased substantially. Thus, the proper operation of a low-cost radio under presence of receiver non-linearity is possible. Due to the flexible design, the algorithm is generally applicable for wideband receivers and is not restricted to software defined radios

    Progress of Doppler Ultrasound System Design and Architecture

    Get PDF

    Multiplier Free Implementation of 8-tap Daubechies Wavelet Filters for Biomedical Applications

    Get PDF
    Due to an increasing demand for on-sensor biosignal processing in wireless ambulatory applications, it is crucial to reduce the power consumption and hardware cost of the signal processing units. Discrete Wavelet Transform (DWT) is very popular tool in artifact removal, detection and compression for time-frequency analysis of biosignals and can be implemented as two-branch filter bank. This work proposes a new, completely multiplier free filter architecture for implementing Daubechies wavelets which targets Field-Programmable-Gate-Array (FPGA) technologies by replacing multipliers with Reconfigurable Multiplier Blocks (ReMBs). The results have shown that the proposed technique reduces the hardware complexity by 40% in terms of Look-Up Table (LUT) count and can be used in low-cost embedded platforms for ambulatory physiological signal monitoring and analysis

    FPGA based Uniform Channelizer Implementation

    Get PDF
    Channelizers are widely used in modern digital communication systems. Advanced uniform multirate channelization have been theoretically proved to be capable of reducing the computational load, with a better performance. Therefore, in this thesis, we implement these designs on a FPGA board for the sake of the comprehensive evaluation of resource usage, performance and frequency response. The uniform filter-banks are one of the most essential unit in channelization. The Generalised Discrete Fourier Transform Modulated Filter Bank (GDFT-FB), as an important variant of basic a DFT-FB, has been implemented in FPGA and demonstrated with a better computational saving rather than traditional schemes. Moreover the oversampling version is demonstrated to have a better frequency response with an acceptable amount of extra resources. On the other hand, frequency response masking (FRM) techniques is able to reduce the number of coefficients. Therefore, the full FRM GDFT-FB and alternative narrowband FRM GDFT-FB are both implemented in FPGA platform, in order to achieve a better performance and hardware efficiency

    Design Of Polynomial-based Filters For Continuously Variable Sample Rate Conversion With Applications In Synthetic Instrumentati

    Get PDF
    In this work, the design and application of Polynomial-Based Filters (PBF) for continuously variable Sample Rate Conversion (SRC) is studied. The major contributions of this work are summarized as follows. First, an explicit formula for the Fourier Transform of both a symmetrical and nonsymmetrical PBF impulse response with variable basis function coefficients is derived. In the literature only one explicit formula is given, and that for a symmetrical even length filter with fixed basis function coefficients. The frequency domain optimization of PBFs via linear programming has been proposed in the literature, however, the algorithm was not detailed nor were explicit formulas derived. In this contribution, a minimax optimization procedure is derived for the frequency domain optimization of a PBF with time-domain constraints. Explicit formulas are given for direct input to a linear programming routine. Additionally, accompanying Matlab code implementing this optimization in terms of the derived formulas is given in the appendix. In the literature, it has been pointed out that the frequency response of the Continuous-Time (CT) filter decays as frequency goes to infinity. It has also been observed that when implemented in SRC, the CT filter is sampled resulting in CT frequency response aliasing. Thus, for example, the stopband sidelobes of the Discrete-Time (DT) implementation rise above the CT designed level. Building on these observations, it is shown how the rolloff rate of the frequency response of a PBF can be adjusted by adding continuous derivatives to the impulse response. This is of great advantage, especially when the PBF is used for decimation as the aliasing band attenuation can be made to increase with frequency. It is shown how this technique can be used to dramatically reduce the effect of alias build up in the passband. In addition, it is shown that as the number of continuous derivatives of the PBF increases the resulting DT implementation more closely matches the Continuous-Time (CT) design. When implemented for SRC, samples from a PBF impulse response are computed by evaluating the polynomials using a so-called fractional interval, µ. In the literature, the effect of quantizing µ on the frequency response of the PBF has been studied. Formulas have been derived to determine the number of bits required to keep frequency response distortion below prescribed bounds. Elsewhere, a formula has been given to compute the number of bits required to represent µ to obtain a given SRC accuracy for rational factor SRC. In this contribution, it is shown how these two apparently competing requirements are quite independent. In fact, it is shown that the wordlength required for SRC accuracy need only be kept in the µ generator which is a single accumulator. The output of the µ generator may then be truncated prior to polynomial evaluation. This results in significant computational savings, as polynomial evaluation can require several multiplications and additions. Under the heading of applications, a new Wideband Digital Downconverter (WDDC) for Synthetic Instruments (SI) is introduced. DDCs first tune to a signal\u27s center frequency using a numerically controlled oscillator and mixer, and then zoom-in to the bandwidth of interest using SRC. The SRC is required to produce continuously variable output sample rates from a fixed input sample rate over a large range. Current implementations accomplish this using a pre-filter, an arbitrary factor resampler, and integer decimation filters. In this contribution, the SRC of the WDDC is simplified reducing the computational requirements to a factor of three or more. In addition to this, it is shown how this system can be used to develop a novel computationally efficient FFT-based spectrum analyzer with continuously variable frequency spans. Finally, after giving the theoretical foundation, a real Field Programmable Gate Array (FPGA) implementation of a novel Arbitrary Waveform Generator (AWG) is presented. The new approach uses a fixed Digital-to-Analog Converter (DAC) sample clock in combination with an arbitrary factor interpolator. Waveforms created at any sample rate are interpolated to the fixed DAC sample rate in real-time. As a result, the additional lower performance analog hardware required in current approaches, namely, multiple reconstruction filters and/or additional sample clocks, is avoided. Measured results are given confirming the performance of the system predicted by the theoretical design and simulation

    Cryogenic fibre-fed laser metrology

    Get PDF
    Cryogenic cooling is a fundamental requirement for broadband far-infrared spectroscopic instrumentation to benefit from state-of-the-art far-infrared detectors. The precision to which the moving cryogenic components of the instrument can be measured and controlled affects its ability to recover the spectrum and exacts a low power robust position metrology system. This thesis explores a number of laser-based position metrology solutions and shows that a fibre-fed range-resolved interferometer meets the stringent precision and low power requirements of a metrology system for future space missions. Two cryogenic fibre-fed range-resoled interferometers are theoretically discussed and subsequently constructed; the first using the Clarke transform to decode three-phase signals, and the second based on sinusoidal laser frequency modulation. Experimental results of room and cryogenic (<4 K) temperature testing for both systems are presented. Lessons learned, suggested improvements, and the employment of a range-resolved interferometer for cryogenic accelerometry, lunar seismology, and other applications are discussed

    RAPID CLOCK RECOVERY ALGORITHMS FOR DIGITAL MAGNETIC RECORDING AND DATA COMMUNICATIONS

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN024293 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore