638 research outputs found

    A predictive control with flying capacitor balancing of a multicell active power filter

    Get PDF
    Unlike traditional inverters, multicell inverters have the following advantages: lower switching frequency, high number of output levels, and less voltage constraints on the insulated-gate bipolar transistors. Significant performances are provided with this structure which is constituted with flying capacitors. This paper deals with a predictive and direct control applied to the multicell inverter for an original application of this converter: a three-phase active filter. To take advantage of the capabilities of the multicell converter in terms of redundant control states, a voltage control method of flying capacitor is added, based on the use of a switching table. Flying capacitor voltages are kept on a fixed interval, and precise voltage sensors are not necessary. The association of predictive control and voltage balancing increases considerably the bandwidth of the active filter

    Regulatori struje aktivnih filtara snage za poboljšanje kvalitete snage: Tehnička analiza

    Get PDF
    Non-linear load deteriorates the quality of current waveforms at the point of common coupling of various consumers. Active power filter (APFs) is used to mitigate the most concern harmonic pollution in an electrical network. The controller part is the nucleus of an active power filter configuration. Active power filter performance is affected significantly by the selection of current control techniques. The active filter and its current control must have the capability to track sudden slope variations in the current reference to compensate the distorted current drawn by the voltage source inverter. Therefore, the choice and implementation of the current regulator is more important for the achievement of a satisfactory performance level. In this survey, technical reviews of various types of controllers covering a wide range have been presented. This work also reveals the advantages and disadvantages of the practiced control strategies. The effectiveness of the study will help the researchers to choose the proper control methods for various applicationsof active power filter.Nelinearni tereti pogoršavaju kvalitetu strujnih valova u točki u kojoj se spaja više potrošača. Aktivni filtar snage se koristi za ublažavanje najvažnijeg harmoničkog onečišćenja strujne mreže. Jezgra aktivnog filtra snage je regulator. Na performanse aktivnog filtra snage značajno utječe odabir upravljačke tehnike. Aktivni filtar i njegova tehnika upravljanja strujom moraju imati mogućnost pratiti nagle skokove u referentnoj vrijednosti struje kako bi mogli kompenzirati izobličenja struje koju vuče inverter naponskog izvora. Zato su izbor i implementacija regulatora struje iznimno važni za postizanje zadovoljavajuće razine performansi. U ovom pregledu su predstavljene tehničke recenzije koje pokrivaju širok raspon regulatora. Ovaj rad također otkriva prednosti i mane korištenih strategija upravljanja. Efektivnost ovog pregleda pomoći će istraživačima da izaberu ispravnu metodu upravljanja za različite aplikacije aktivnog filtra snage

    Regulatori struje aktivnih filtara snage za poboljšanje kvalitete snage: Tehnička analiza

    Get PDF
    Non-linear load deteriorates the quality of current waveforms at the point of common coupling of various consumers. Active power filter (APFs) is used to mitigate the most concern harmonic pollution in an electrical network. The controller part is the nucleus of an active power filter configuration. Active power filter performance is affected significantly by the selection of current control techniques. The active filter and its current control must have the capability to track sudden slope variations in the current reference to compensate the distorted current drawn by the voltage source inverter. Therefore, the choice and implementation of the current regulator is more important for the achievement of a satisfactory performance level. In this survey, technical reviews of various types of controllers covering a wide range have been presented. This work also reveals the advantages and disadvantages of the practiced control strategies. The effectiveness of the study will help the researchers to choose the proper control methods for various applicationsof active power filter.Nelinearni tereti pogoršavaju kvalitetu strujnih valova u točki u kojoj se spaja više potrošača. Aktivni filtar snage se koristi za ublažavanje najvažnijeg harmoničkog onečišćenja strujne mreže. Jezgra aktivnog filtra snage je regulator. Na performanse aktivnog filtra snage značajno utječe odabir upravljačke tehnike. Aktivni filtar i njegova tehnika upravljanja strujom moraju imati mogućnost pratiti nagle skokove u referentnoj vrijednosti struje kako bi mogli kompenzirati izobličenja struje koju vuče inverter naponskog izvora. Zato su izbor i implementacija regulatora struje iznimno važni za postizanje zadovoljavajuće razine performansi. U ovom pregledu su predstavljene tehničke recenzije koje pokrivaju širok raspon regulatora. Ovaj rad također otkriva prednosti i mane korištenih strategija upravljanja. Efektivnost ovog pregleda pomoći će istraživačima da izaberu ispravnu metodu upravljanja za različite aplikacije aktivnog filtra snage

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    Robust fault tolerant control of induction motor system

    Get PDF
    Research into fault tolerant control (FTC, a set of techniques that are developed to increase plant availability and reduce the risk of safety hazards) for induction motors is motivated by practical concerns including the need for enhanced reliability, improved maintenance operations and reduced cost. Its aim is to prevent that simple faults develop into serious failure. Although, the subject of induction motor control is well known, the main topics in the literature are concerned with scalar and vector control and structural stability. However, induction machines experience various fault scenarios and to meet the above requirements FTC strategies based on existing or more advanced control methods become desirable. Some earlier studies on FTC have addressed particular problems of 3-phase sensor current/voltage FTC, torque FTC, etc. However, the development of these methods lacks a more general understanding of the overall problem of FTC for an induction motor based on a true fault classification of possible fault types.In order to develop a more general approach to FTC for induction motors, i.e. not just designing specific control approaches for individual induction motor fault scenarios, this thesis has carried out a systematic research on induction motor systems considering the various faults that can typically be present, having either “additive” fault or “multiplicative” effects on the system dynamics, according to whether the faults are sensor or actuator (additive fault) types or component or motor faults (multiplicative fault) types.To achieve the required objectives, an active approach to FTC is used, making use of fault estimation (FE, an approach that determine the magnitude of a fault signal online) and fault compensation. This approach of FTC/FE considers an integration of the electrical and mechanical dynamics, initially using adaptive and/or sliding mode observers, Linear Parameter Varying (LPV, in which nonlinear systems are locally decomposed into several linear systems scheduled by varying parameters) and then using back-stepping control combined with observer/estimation methods for handling certain forms of nonlinearity.In conclusion, the thesis proposed an integrated research of induction motor FTC/FE with the consideration of different types of faults and different types of uncertainties, and validated the approaches through simulations and experiments

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    Model Predictive Control Technique of Multilevel Inverter for PV Applications

    Get PDF
    Renewable energy sources, such as solar, wind, hydro, and biofuels, continue to gain popularity as alternatives to the conventional generation system. The main unit in the renewable energy system is the power conditioning system (PCS). It is highly desirable to obtain higher efficiency, lower component cost, and high reliability for the PCS to decrease the levelized cost of energy. This suggests a need for new inverter configurations and controls optimization, which can achieve the aforementioned needs. To achieve these goals, this dissertation presents a modified multilevel inverter topology for grid-tied photovoltaic (PV) system to achieve a lower cost and higher efficiency comparing with the existing system. In addition, this dissertation will also focus on model predictive control (MPC) which controls the modified multilevel topology to regulate the injected power to the grid. A major requirement for the PCS is harvesting the maximum power from the PV. By incorporating MPC, the performance of the maximum power point tracking (MPPT) algorithm to accurately extract the maximum power is improved for multilevel DC-DC converter. Finally, this control technique is developed for the quasi-z-source inverter (qZSI) to accurately control the DC link voltage, input current, and produce a high quality grid injected current waveform compared with the conventional techniques. This dissertation presents a modified symmetrical and asymmetrical multilevel DC-link inverter (MLDCLI) topology with less power switches and gate drivers. In addition, the MPC technique is used to drive the modified and grid connected MLDCLI. The performance of the proposed topology with finite control set model predictive control (FCS-MPC) is verified by simulation and experimentally. Moreover, this dissertation introduces predictive control to achieve maximum power point for grid-tied PV system to quicken the response by predicting the error before the switching signal is applied to the converter. Using the modified technique ensures the iii system operates at maximum power point which is more economical. Thus, the proposed MPPT technique can extract more energy compared to the conventional MPPT techniques from the same amount of installed solar panel. In further detail, this dissertation proposes the FCS-MPC technique for the qZSI in PV system. In order to further improve the performance of the system, FCS-MPC with one step horizon prediction has been implemented and compared with the classical PI controller. The presented work shows the proposed control techniques outperform the ones of the conventional linear controllers for the same application. Finally, a new method of the parallel processing is presented to reduce the time processing for the MPC

    Design and Development of FPGA based Controllers for Photovoltaic Power System

    Get PDF
    In the recent years owing to increased energy consumption and consequent rise in crude oil price and global climatic change have motivated researchers to focus towards harnessing power from renewable energy resources such as photovoltaic (PV), fuel cell, biomass and wind energy systems. Among the different renewable resources, PV technology is one of the fastest growing technologies, because of abundance availability of solar irradiance and it has no adverse environmental impacts. But, the cost of PV energy is higher than the other conventional sources owing to its low PV conversion efficiency. Therefore, research opportunities lie in applying power electronics and control techniques for harvesting PV power at higher efficiencies for appropriate utilization. For simulation, analysis and control design of a PV power system, an accurate model of the PV cell is essential because PV cell is the basic bulding block of a PV power system. To maximise the power generation of a PV system it is necessary that the PV array should be operated at the maximum power point. A maximum power point tracker (MPPT) is required in the PV system to enable it to operate at the MPP. The output current-voltage (I-V) and power-voltage (P-V) characteristics of a PV vell are non-linear and hence its power fluctuates in accordance with the variation in solar irradiance and temperature. During the last decade, a lot of research has been directed to develop efficient MPPT schemes. But, research opportunities are still promising for designing new MPPT algorithms and to address their digital implementation issues. Further, there lies challenge to design MPPTs that can handle partial shading conditions. The thesis first proposes development of new MPPT algorithms and different pulse width modulated-voltage source inverter control strategies for a PV system. Firstly an integral sliding mode MPPT controller (ISMC) has been proposed for achieving an effective MPPT scheme, and then a modified P&O MPPT controller is developed which is implemented using a real-time digital simulator called Opal-RT. The performance of the modified ISMC is compared with that of the conventional proportional integral (PI) MPPT controller using both MATLAB simulation and real-time experimentation. The performance of the modified P&O MPPT controller with fixed step size is compared with that of the conventional incremental conductance (Inc Cond) and P&O MPPT controllers, and these are validated by using Opal-RT and subsequently through FPGA implementation. A modified incremental conductance MPPT controller with variable step size is then proposed for handling partial shading conditions. The tracking performance of the proposed modified Inc Cond MPPT controller is also compared with that of the conventional Inc Cond MPPT controller, from the obtained results by using Opal-RT. Further, an experimental prototype PV set-up is developed in the laboratory to implement the proposed MPPT algorithms on the physical hardware. After having developed efficient parameter extraction algorithms for a PV panel, the thesis subsequently proposes five new MPPT algorithms such as Integral sliding mode MPPT, modified P&O MPPT, modified Inc Cond MPPT, Model predictive MPPT, and modified Inc Cond variable step size MPPT controllers. All these developed MPPT algorithms have been implemented on a Solar array simulator (SAS) PV system, in MATLAB/SIMULINK, OPAL-RT and on a prototype hardware PV set-up. From the obtained results, it is found that these MPPTs adjust the power of a PV system effectively to its maximum power value smoothly with fast response and accuracy whilst reducing the fluctuations in its power. Tracking performance of all these proposed MPPT algorithms are found to be superior to some of the existing MPPTs such as perturb and observe (P&O), incremental conductance (INC), HCC and adaptive HCC. Further more, a PV system is observed to be stable with all these proposed MPPTs. From the results obtained it is also confirmed that the proposed modified P&O MPPT exhibits better MPP tracking performance in terms of quick settling time and least steady state error. Further, less voltage fluctuation and less maximum overshoot are observed in the case of the proposed modified Inc Cond MPPT among all the proposed MPPT algorithms. The proposed controllers are also well suited to all weather conditions. A grid connected PV system involves a power conversion from DC power into AC power. Due to high switching frequencies of this conversion by inverter, there is a power loss. An efficient control scheme needs to be developed for integrating the PV system to the grid. The thesis then proposes a Model Predictive Control (MPC) for integrating a PV system to the grid. The performance of the MPC is compared with conventional hysteresis current controller (HCC) and also with that of an adaptive HCC (AHCC) through a real-time simulatin using the Opal-RT then through FPGA implementations. FPGA implementation of the controllers such as HCC, AHCC and MPC were also performed by using LABVIEW configured with NI-cRIO-9014 platform. For elimination of current harmonic and reactive power of the grid connected PV system, there is a need of designing a filter. The PV system based shunt active power filter (SAPF) with modified incremental conductance MPPT controller with variable step size is then designed. From the MATLAB simulation and real-time digital simulation studies it is envisaged that the proposed PV based SAPF exhibits good harmonics compensation

    Applications of Power Electronics:Volume 1

    Get PDF

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc
    corecore