42 research outputs found

    FPGA-BASED COMPUTATION OF THE INDUCTANCE OF COILS USED FOR THE MAGNETIC STIMULATION OF THE NERVOUS SYSTEM

    Get PDF
    In the last years the interest for magnetic stimulation of the human nervous tissue has increased considerably, because this technique has proved its utility and applicability both as a diagnostic and as a treatment instrument. Research in this domain is aimed at removing some of the disadvantages of the technique: the lack of focalization of the stimulated region and the reduced efficiency of the energetic transfer from the stimulating coil to the tissue. Better stimulation coils can solve these problems. Designing coils is so far a trial-and error process, relying on very compute-intensive simulations. In software, such a simulation has a very high running time (several hours for complicated geometries of the coils). This paper proposes and demonstrates an FPGA- based hardware implementation of this simulation which reduces the computation time by 4 orders of magnitude. Thanks to this powerful tool, some significant improvements in the design of the coils have already been obtained

    Investigation of high bandwith biodevices for transcutaneous wireless telemetry

    Get PDF
    PhD ThesisBIODEVICE implants for telemetry are increasingly applied today in various areas applications. There are many examples such as; telemedicine, biotelemetry, health care, treatments for chronic diseases, epilepsy and blindness, all of which are using a wireless infrastructure environment. They use microelectronics technology for diagnostics or monitoring signals such as Electroencephalography or Electromyography. Conceptually the biodevices are defined as one of these technologies combined with transcutaneous wireless implant telemetry (TWIT). A wireless inductive coupling link is a common way for transferring the RF power and data, to communicate between a reader and a battery-less implant. Demand for higher data rate for the acquisition data returned from the body is increasing, and requires an efficient modulator to achieve high transfer rate and low power consumption. In such applications, Quadrature Phase Shift Keying (QPSK) modulation has advantages over other schemes, and double the symbol rate with respect to Binary Phase Shift Keying (BPSK) over the same spectrum band. In contrast to analogue modulators for generating QPSK signals, where the circuit complexity and power dissipation are unsuitable for medical purposes, a digital approach has advantages. Eventually a simple design can be achieved by mixing the hardware and software to minimize size and power consumption for implantable telemetry applications. This work proposes a new approach to digital modulator techniques, applied to transcutaneous implantable telemetry applications; inherently increasing the data rate and simplifying the hardware design. A novel design for a QPSK VHDL modulator to convey a high data rate is demonstrated. Essentially, CPLD/FPGA technology is used to generate hardware from VHDL code, and implement the device which performs the modulation. This improves the data transmission rate between the reader and biodevice. This type of modulator provides digital synthesis and the flexibility to reconfigure and upgrade with the two most often languages used being VHDL and Verilog (IEEE Standard) being used as hardware structure description languages. The second objective of this thesis is to improve the wireless coupling power (WCP). An efficient power amplifier was developed and a new algorithm developed for auto-power control design at the reader unit, which monitors the implant device and keeps the device working within the safety regulation power limits (SAR). The proposed system design has also been modeled and simulated with MATLAB/Simulink to validate the modulator and examine the performance of the proposed modulator in relation to its specifications.Higher Education Ministry in Liby

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brain’s nerve cells

    Design, Fabrication, and Validation of a Highly Miniaturized Wirelessly Powered Neural Implant

    Get PDF
    We have recently witnessed an explosion in the number of neurons that can be recorded and/or stimulated simultaneously during neurophysiological experiments. Experiments have progressed from recording or stimulation with a single electrode to Micro-Electrode Array (MEA) such as the Utah Array. These MEAs can be instrumented with current drivers, neural amplifiers, digitizers and wireless communication links. The broad interest in these MEAs suggests that there is a need for large scale neural recording and stimulation. The ultimate goal is to coordinate the recordings and stimulation of potentially thousands of neurons from many brain areas. Unfortunately, current state-of-the-art MEAs are limited by their scalability and long-term stability because of their physical size and rigid configuration. Furthermore, some applications prioritize a distributed neural interface over one that offers high resolution. Examples of biomedical applications that necessitate an interface with neurons from many sites in the brain include: i) understanding and treating neurological disorders that affect distributed locations throughout the CNS; ii) revolutionizing our understanding of the brain by studying the correlations between neural networks from different regions of the brain and the mechanisms of cognitive functions; and iii) covering larger area in the sensorimotor cortex of amputees to more accurately control robotic prosthetic limbs or better evoke a sense of touch. One solution to make large scale, fully specifiable, electrical stimulation and recording possible, is to disconnect the electrodes from the base, so that they can be arbitrarily placed, using a syringe, freely in the nervous system. To overcome the challenges of system miniaturization, we propose the “microbead”, an ultra-small neural stimulating implant, that is currently implemented in a 130nm CMOS technology with the following characteristics: 200 μm × 200 μm × 80 μm size; optimized wireless powering, all micro-electronics on single chip; and integrated electrodes and coil. The stimulating microbead is validated in a sciatic nerve by generating leg movements. A recording microbead is also investigated with following characteristics: wireless powering using steerable phased coil array, miniaturized front-end, and backscattering telemetry. These microbeads could eventually replace the rigid arrays that are currently the state-of-the-art in electrophysiology set-ups

    Restoring Sensation of Gravitoinertial Acceleration through Prosthetic Stimulation of the Utricle and Saccule

    Get PDF
    Individuals with bilateral vestibular hypofunction suffer reduced quality of life due to loss of postural and ocular reflexes essential to maintaining balance and visual acuity during head movements. Vestibular stimulation has demonstrated success in restoring sensation of angular head rotations using electrical stimulation of the semi-circular canals (SCCs). Efforts toward utricle and saccule stimulation to restore sensation of gravitoinertial acceleration have been limited due to the complexity of the otolith end organs and otolith-ocular reflexes (OORs). Four key pieces of technology were developed to extend prosthetic stimulation to the utricle and saccule: a low-noise scleral coil system to record binocular 3D eye movements; a motion platform control system for automated presentation of rotational and translational stimuli; custom electrode arrays with fifty contacts targeting the SCCs, utricle and saccule; and a general-purpose neuroelectronic stimulator for vestibular and other neuromodulation applications. Using these new technologies, OORs were first characterized in six chinchillas to establish OOR norms during translations and static tilts. Results led to creation of a model that infers the axis of head tilt from measured binocular eye movements and thereby provides a context and means to assess the selectivity of prosthetic utricle and saccule stimulation. The model confirms the expectation that excitation of the left utricle and saccule primarily encodes tilts that bring the left ear down. Three of the chinchillas were implanted with electrode arrays in the left ear. Step changes in pulse rate were delivered to utricle and saccule electrodes near the maculae while measuring 3D binocular eye movements with the animal stationary in darkness. These stimuli elicited sustained ocular counter-roll responses that increased in magnitude as pulse rate or amplitude increased. Bipolar stimulation via neighboring electrodes elicited slow-rising or delayed onset of ocular counter-rolls (consistent with normal translational OOR low-pass filter behavior). Two chinchillas showed different direction of electrically-evoked ocular counter-roll between utricle versus saccule stimulation. Only near-neighbor bipolar electrode combinations elicited eye responses compensatory for tilts other than the ‘usual’ left ear down, suggesting the need for distributing multiple bipolar electrode pairs across the maculae to achieve selective stimulation and restore 3D sensation of gravitoinertial acceleration

    Exploiting Near Field and Surface Wave Propagation for Implanted Devices

    Get PDF
    <p>This thesis examines the bandwidth shortcomings of conventional inductive coupling biotelemetry systems for implantable devices, and presents two approaches toward an end-to-end biotelemetry system for reducing the power consumption of implanted devices at increased levels of bandwidth. By leveraging the transition zone between the near and far field, scattering in the near field at UHF frequencies for increased bandwidth at low power budgets can be employed. Additionally, taking advantage of surface wave propagation permits the use of single-wire RF transmission lines in biological tissue, offering more efficient signal routing over near field coupling resulting in controlled implant depth at low power budgets.</p><p>Due to the dielectric properties of biological tissue, and the necessity to operate in the radiating near field to communicate via scattered fields, the implant depth drives the carrier frequency. The information bandwidth supplied by each sensing electrode in conventional implants also drives the operating frequency and regime. At typical implant depths, frequencies in the UHF range permit operation in the radiating near field as well as sufficient bandwidth.</p><p>Backscatter modulation provides a low-power, high-bandwidth alternative to conventional low frequency inductive coupling. A prototype active implantable device presented in this thesis is capable of transmitting data at 30 Mbps over a 915 MHz link while immersed in saline, at a communication efficiency of 16.4 pJ/bit. A prototype passive device presented in this thesis is capable of operating battery-free, fully immersed in saline, while transmitting data at 5 Mbps and consuming 1.23 mW. This prototype accurately demodulates neural data while immersed in saline at a distance of 2 cm. This communication distance is extended at similar power budgets by exploiting surface wave propagation along a single-wire transmission line. Theoretical models of single-wire RF transmission lines embedded in high permittivity and conductivity dielectrics are validated by measurements. A single-wire transmission line of radius 152.4 um exhibits a loss of 1 dB/cm at 915 MHz in saline, and extends the implant depth to 6 cm while staying within SAR limits.</p><p>This work opens the door for implantable biotelemetry systems to handle the vast amount of data generated by modern sensing devices, potentially offering new insight into neurological diseases, and may aid in the development of BMI's.</p>Dissertatio

    Functional brain imaging with fMRI and MEG

    Get PDF
    The work described in this thesis was performed by the author, except where indicated. All the studies were accomplished on the 3 Tesla system within the Magnetic Resonance Centre at the University of Nottingham, and the Wellcome Trust MEG Laboratory at the Aston University during the period between October 1999 and June 2005. Functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG) are two promising brain function research modalities, sensitive to the hemodynamic and electrophysiological responses respectively during brain activites. The feasibility of joint employment of both modalities was examined in both spatial and temporal domains. A somatosensory tactile stimulus was adopted to induce simple functional reaction. It was shown that a reasonable spatial correspondence between fMRI and MEG can be established. Attempts were made on MEG recordings to extract suitable aspects for temporal features matching fMRI with a method reflecting the physical principles. It was shown that the this method is capable of exposing the nature of neural electric activities, although further development is required to perfect the strategy

    Functional brain imaging with fMRI and MEG

    Get PDF
    The work described in this thesis was performed by the author, except where indicated. All the studies were accomplished on the 3 Tesla system within the Magnetic Resonance Centre at the University of Nottingham, and the Wellcome Trust MEG Laboratory at the Aston University during the period between October 1999 and June 2005. Functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG) are two promising brain function research modalities, sensitive to the hemodynamic and electrophysiological responses respectively during brain activites. The feasibility of joint employment of both modalities was examined in both spatial and temporal domains. A somatosensory tactile stimulus was adopted to induce simple functional reaction. It was shown that a reasonable spatial correspondence between fMRI and MEG can be established. Attempts were made on MEG recordings to extract suitable aspects for temporal features matching fMRI with a method reflecting the physical principles. It was shown that the this method is capable of exposing the nature of neural electric activities, although further development is required to perfect the strategy

    Communication and energy delivery architectures for personal medical devices

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 219-232).Advances in sensor technologies and integrated electronics are revolutionizing how humans access and receive healthcare. However, many envisioned wearable or implantable systems are not deployable in practice due to high energy consumption and anatomically-limited size constraints, necessitating large form-factors for external devices, or eventual surgical re-implantation procedures for in-vivo applications. Since communication and energy-management sub-systems often dominate the power budgets of personal biomedical devices, this thesis explores alternative usecases, system architectures, and circuit solutions to reduce their energy burden. For wearable applications, a system-on-chip is designed that both communicates and delivers power over an eTextiles network. The transmitter and receiver front-ends are at least an order of magnitude more efficient than conventional body-area networks. For implantable applications, two separate systems are proposed that avoid reimplantation requirements. The first system extracts energy from the endocochlear potential, an electrochemical gradient found naturally within the inner-ear of mammals, in order to power a wireless sensor. Since extractable energy levels are limited, novel sensing, communication, and energy management solutions are proposed that leverage duty-cycling to achieve enabling power consumptions that are at least an order of magnitude lower than previous work. Clinical measurements show the first system demonstrated to sustain itself with a mammalian-generated electrochemical potential operating as the only source of energy into the system. The second system leverages the essentially unlimited number of re-charge cycles offered by ultracapacitors. To ease patient usability, a rapid wireless capacitor charging architecture is proposed that employs a multi-tapped secondary inductive coil to provide charging times that are significantly faster than conventional approaches.by Patrick Philip Mercier.Ph.D
    corecore