289 research outputs found

    Smart Chips for Smart Surroundings -- 4S

    Get PDF
    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it provides the efficiency needed for these systems, it enables systems that can adapt to rapidly changing environmental conditions, it enables communication over heterogeneous wireless networks, and it reduces risks: reconfigurable systems can adapt to standards that may vary from place to place or standards that have changed during and after product development. In 4S we focused on heterogeneous building blocks such as analogue, hardwired functions, fine and coarse grain reconfigurable tiles and microprocessors. Such a platform can adapt to a wide application space without the need for specialized ASICs. A novel power aware design flow and runtime system was developed. The runtime system decides dynamically about the near-optimal application mapping to the given hardware platform. The overall concept was verified on hardware platforms based on an existing SoC and in a second step with novel silicon. DRM (Digital Radio Mondiale) and MPEG4 Video applications have been implemented on the platforms demonstrating the adaptability of the 4S concept

    Phobos: The design and implementation of embedded software for a low cost radar warning receiver

    Get PDF
    This portfolio thesis describes work undertaken by the author under the Engineering Doctorate program of the Institute for System Level Integration. It was carried out in conjunction with the sponsor company Teledyne Defence Limited. A radar warning receiver is a device used to detect and identify the emissions of radars. They were originally developed during the Second World War and are found today on a variety of military platforms as part of the platform’s defensive systems. Teledyne Defence has designed and built components and electronic subsystems for the defence industry since the 1970s. This thesis documents part of the work carried out to create Phobos, Teledyne Defence’s first complete radar warning receiver. Phobos was designed to be the first low cost radar warning receiver. This was made possible by the reuse of existing Teledyne Defence products, commercial off the shelf hardware and advanced UK government algorithms. The challenges of this integration are described and discussed, with detail given of the software architecture and the development of the embedded application. Performance of the embedded system as a whole is described and qualified within the context of a low cost system

    Characterisation of MIMO radio propagation channels

    Get PDF
    Due to the incessant requirement for higher performance radio systems, wireless designers have been constantly seeking ways to improve spectrum efficiency, link reliability, service quality, and radio network coverage. During the past few years, space-time technology which employs multiple antennas along with suitable signalling schemes and receiver architectures has been seen as a powerful tool for the implementation of the aforementioned requirements. In particular, the concept of communications via Multiple-Input Multiple-Output (MIMO) links has emerged as one of the major contending ideas for next generation ad-hoc and cellular systems. This is inherently due to the capacities expected when multiple antennas are employed at both ends of the radio link. Such a mobile radio propagation channel constitutes a MIMO system. Multiple antenna technologies and in particular MIMO signalling are envisaged for a number of standards such as the next generation of Wireless Local Area Network (WLAN) technology known as 802.1 ln and the development of the Worldwide Interoperability for Microwave Access (WiMAX) project, such as the 802.16e. For the efficient design, performance evaluation and deployment of such multiple antenna (space-time) systems, it becomes increasingly important to understand the characteristics of the spatial radio channel. This criterion has led to the development of new sounding systems, which can measure both spatial and temporal channel information. In this thesis, a novel semi-sequential wideband MIMO sounder is presented, which is suitable for high-resolution radio channel measurements. The sounder produces a frequency modulated continuous wave (FMCW) or chirp signal with variable bandwidth, centre frequency and waveform repetition rate. It has programmable bandwidth up to 300 MHz and waveform repetition rates up to 300 Hz, and could be used to measure conventional high- resolution delay/Doppler information as well as spatial channel information such as Direction of Arrival (DOA) and Direction of Departure (DOD). Notably the knowledge of the angular information at the link ends could be used to properly design and develop systems such as smart antennas. This thesis examines the theory of multiple antenna propagation channels, the sounding architecture required for the measurement of such spatial channel information and the signal processing which is used to quantify and analyse such measurement data. Over 700 measurement files were collected corresponding to over 175,000 impulse responses with different sounder and antenna array configurations. These included measurements in the Universal Mobile Telecommunication Systems Frequency Division Duplex (UMTS-FDD) uplink band, the 2.25 GHz and 5.8 GHz bands allocated for studio broadcast MIMO video links, and the 2.4 GHz and 5.8 GHz ISM bands allocated for Wireless Local Area Network (WLAN) activity as well as for a wide range of future systems defined in the WiMAX project. The measurements were collected predominantly for indoor and some outdoor multiple antenna channels using sounding signals with 60 MHz, 96 MHz and 240 MHz bandwidth. A wide range of different MIMO antenna array configurations are examined in this thesis with varying space, time and frequency resolutions. Measurements can be generally subdivided into three main categories, namely measurements at different locations in the environment (static), measurements while moving at regular intervals step by step (spatial), and measurements while the receiver (or transmitter) is on the move (dynamic). High-scattering as well as time-varying MIMO channels are examined for different antenna array structures

    Neuromorphic cross correlation of digital spreading codes

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 85-88).The study of neural networks is inspired by the mystery of how the brain works. In a quest to solve this mystery, scientists and engineers hope that they will learn how to build more powerful computational systems that are capable of processing information much more efficiently than today’s digital computer systems. This dissertation involves a biologically inspired circuit which can be used as an alternative for a cross correlation engine. Cross correlation engines are widely used in spread spectrum, wireless communication systems that use digital spreading codes to divide a single communication medium into separate channels. This technology is used in many systems such as GPS, ZigBee and GSM mobile communications. The technology is renowned for its robustness and security since it is highly tolerant to signal jamming and spoofing. Digital spreading in wireless communication is also widely used in military systems and has recently been proposed for use in the medical sector for neural prostheses. A limitation of using digital spreading is that the computational demands on the cross correlation engine are normally quite high and is generally considered to be the limiting factor in designing low-power portable devices. In recent developments proposed by Tapson, it was shown that a two-neuron mutual inhibition network can be used to generate a cross correlation like function (Tapson et al., 2008). In this work, the two-neuron cross correlation engine is analysed specifically for application on a particular set of digital spreading codes called Gold codes. Based on the analysis, the neuron’s response to an input signal is optimised in favour of yielding a neural cross correlation that resembles the mathematical cross correlation more closely. The aim is to find a biologically inspired computer that is practically viable in an electrical engineering application involving a digital spread spectrum communication system

    Dirty RF Signal Processing for Mitigation of Receiver Front-end Non-linearity

    Get PDF
    Moderne drahtlose Kommunikationssysteme stellen hohe und teilweise gegensätzliche Anforderungen an die Hardware der Funkmodule, wie z.B. niedriger Energieverbrauch, große Bandbreite und hohe Linearität. Die Gewährleistung einer ausreichenden Linearität ist, neben anderen analogen Parametern, eine Herausforderung im praktischen Design der Funkmodule. Der Fokus der Dissertation liegt auf breitbandigen HF-Frontends für Software-konfigurierbare Funkmodule, die seit einigen Jahren kommerziell verfügbar sind. Die praktischen Herausforderungen und Grenzen solcher flexiblen Funkmodule offenbaren sich vor allem im realen Experiment. Eines der Hauptprobleme ist die Sicherstellung einer ausreichenden analogen Performanz über einen weiten Frequenzbereich. Aus einer Vielzahl an analogen Störeffekten behandelt die Arbeit die Analyse und Minderung von Nichtlinearitäten in Empfängern mit direkt-umsetzender Architektur. Im Vordergrund stehen dabei Signalverarbeitungsstrategien zur Minderung nichtlinear verursachter Interferenz - ein Algorithmus, der besser unter "Dirty RF"-Techniken bekannt ist. Ein digitales Verfahren nach der Vorwärtskopplung wird durch intensive Simulationen, Messungen und Implementierung in realer Hardware verifiziert. Um die Lücken zwischen Theorie und praktischer Anwendbarkeit zu schließen und das Verfahren in reale Funkmodule zu integrieren, werden verschiedene Untersuchungen durchgeführt. Hierzu wird ein erweitertes Verhaltensmodell entwickelt, das die Struktur direkt-umsetzender Empfänger am besten nachbildet und damit alle Verzerrungen im HF- und Basisband erfasst. Darüber hinaus wird die Leistungsfähigkeit des Algorithmus unter realen Funkkanal-Bedingungen untersucht. Zusätzlich folgt die Vorstellung einer ressourceneffizienten Echtzeit-Implementierung des Verfahrens auf einem FPGA. Abschließend diskutiert die Arbeit verschiedene Anwendungsfelder, darunter spektrales Sensing, robuster GSM-Empfang und GSM-basiertes Passivradar. Es wird gezeigt, dass nichtlineare Verzerrungen erfolgreich in der digitalen Domäne gemindert werden können, wodurch die Bitfehlerrate gestörter modulierter Signale sinkt und der Anteil nichtlinear verursachter Interferenz minimiert wird. Schließlich kann durch das Verfahren die effektive Linearität des HF-Frontends stark erhöht werden. Damit wird der zuverlässige Betrieb eines einfachen Funkmoduls unter dem Einfluss der Empfängernichtlinearität möglich. Aufgrund des flexiblen Designs ist der Algorithmus für breitbandige Empfänger universal einsetzbar und ist nicht auf Software-konfigurierbare Funkmodule beschränkt.Today's wireless communication systems place high requirements on the radio's hardware that are largely mutually exclusive, such as low power consumption, wide bandwidth, and high linearity. Achieving a sufficient linearity, among other analogue characteristics, is a challenging issue in practical transceiver design. The focus of this thesis is on wideband receiver RF front-ends for software defined radio technology, which became commercially available in the recent years. Practical challenges and limitations are being revealed in real-world experiments with these radios. One of the main problems is to ensure a sufficient RF performance of the front-end over a wide bandwidth. The thesis covers the analysis and mitigation of receiver non-linearity of typical direct-conversion receiver architectures, among other RF impairments. The main focus is on DSP-based algorithms for mitigating non-linearly induced interference, an approach also known as "Dirty RF" signal processing techniques. The conceived digital feedforward mitigation algorithm is verified through extensive simulations, RF measurements, and implementation in real hardware. Various studies are carried out that bridge the gap between theory and practical applicability of this approach, especially with the aim of integrating that technique into real devices. To this end, an advanced baseband behavioural model is developed that matches to direct-conversion receiver architectures as close as possible, and thus considers all generated distortions at RF and baseband. In addition, the algorithm's performance is verified under challenging fading conditions. Moreover, the thesis presents a resource-efficient real-time implementation of the proposed solution on an FPGA. Finally, different use cases are covered in the thesis that includes spectrum monitoring or sensing, GSM downlink reception, and GSM-based passive radar. It is shown that non-linear distortions can be successfully mitigated at system level in the digital domain, thereby decreasing the bit error rate of distorted modulated signals and reducing the amount of non-linearly induced interference. Finally, the effective linearity of the front-end is increased substantially. Thus, the proper operation of a low-cost radio under presence of receiver non-linearity is possible. Due to the flexible design, the algorithm is generally applicable for wideband receivers and is not restricted to software defined radios
    corecore