162 research outputs found

    Prescription of rhythmic patterns for legged locomotion

    Get PDF
    As the engine behind many life phenomena, motor information generated by the central nervous system (CNS) plays a critical role in the activities of all animals. In this work, a novel, macroscopic and model-independent approach is presented for creating different patterns of coupled neural oscillations observed in biological central pattern generators (CPG) during the control of legged locomotion. Based on a simple distributed state machine, which consists of two nodes sharing pre-defined number of resources, the concept of oscillatory building blocks (OBBs) is summarised for the production of elaborated rhythmic patterns. Various types of OBBs can be designed to construct a motion joint of one degree-of-freedom (DOF) with adjustable oscillatory frequencies and duty cycles. An OBBs network can thus be potentially built to generate a full range of locomotion patterns of a legged animal with controlled transitions between different rhythmic patterns. It is shown that gait pattern transition can be achieved by simply changing a single parameter of an OBB module. Essentially this simple mechanism allows for the consolidation of a methodology for the construction of artificial CPG architectures behaving as an asymmetric Hopfield neural network. Moreover, the proposed CPG model introduced here is amenable to analogue and/or digital circuit integration

    Principles of Neuromorphic Photonics

    Full text link
    In an age overrun with information, the ability to process reams of data has become crucial. The demand for data will continue to grow as smart gadgets multiply and become increasingly integrated into our daily lives. Next-generation industries in artificial intelligence services and high-performance computing are so far supported by microelectronic platforms. These data-intensive enterprises rely on continual improvements in hardware. Their prospects are running up against a stark reality: conventional one-size-fits-all solutions offered by digital electronics can no longer satisfy this need, as Moore's law (exponential hardware scaling), interconnection density, and the von Neumann architecture reach their limits. With its superior speed and reconfigurability, analog photonics can provide some relief to these problems; however, complex applications of analog photonics have remained largely unexplored due to the absence of a robust photonic integration industry. Recently, the landscape for commercially-manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. The scientific community has set out to build bridges between the domains of photonic device physics and neural networks, giving rise to the field of \emph{neuromorphic photonics}. This article reviews the recent progress in integrated neuromorphic photonics. We provide an overview of neuromorphic computing, discuss the associated technology (microelectronic and photonic) platforms and compare their metric performance. We discuss photonic neural network approaches and challenges for integrated neuromorphic photonic processors while providing an in-depth description of photonic neurons and a candidate interconnection architecture. We conclude with a future outlook of neuro-inspired photonic processing.Comment: 28 pages, 19 figure

    Autonomously Reconfigurable Artificial Neural Network on a Chip

    Get PDF
    Artificial neural network (ANN), an established bio-inspired computing paradigm, has proved very effective in a variety of real-world problems and particularly useful for various emerging biomedical applications using specialized ANN hardware. Unfortunately, these ANN-based systems are increasingly vulnerable to both transient and permanent faults due to unrelenting advances in CMOS technology scaling, which sometimes can be catastrophic. The considerable resource and energy consumption and the lack of dynamic adaptability make conventional fault-tolerant techniques unsuitable for future portable medical solutions. Inspired by the self-healing and self-recovery mechanisms of human nervous system, this research seeks to address reliability issues of ANN-based hardware by proposing an Autonomously Reconfigurable Artificial Neural Network (ARANN) architectural framework. Leveraging the homogeneous structural characteristics of neural networks, ARANN is capable of adapting its structures and operations, both algorithmically and microarchitecturally, to react to unexpected neuron failures. Specifically, we propose three key techniques --- Distributed ANN, Decoupled Virtual-to-Physical Neuron Mapping, and Dual-Layer Synchronization --- to achieve cost-effective structural adaptation and ensure accurate system recovery. Moreover, an ARANN-enabled self-optimizing workflow is presented to adaptively explore a "Pareto-optimal" neural network structure for a given application, on the fly. Implemented and demonstrated on a Virtex-5 FPGA, ARANN can cover and adapt 93% chip area (neurons) with less than 1% chip overhead and O(n) reconfiguration latency. A detailed performance analysis has been completed based on various recovery scenarios

    Interfacing of neuromorphic vision, auditory and olfactory sensors with digital neuromorphic circuits

    Get PDF
    The conventional Von Neumann architecture imposes strict constraints on the development of intelligent adaptive systems. The requirements of substantial computing power to process and analyse complex data make such an approach impractical to be used in implementing smart systems. Neuromorphic engineering has produced promising results in applications such as electronic sensing, networking architectures and complex data processing. This interdisciplinary field takes inspiration from neurobiological architecture and emulates these characteristics using analogue Very Large Scale Integration (VLSI). The unconventional approach of exploiting the non-linear current characteristics of transistors has aided in the development of low-power adaptive systems that can be implemented in intelligent systems. The neuromorphic approach is widely applied in electronic sensing, particularly in vision, auditory, tactile and olfactory sensors. While conventional sensors generate a huge amount of redundant output data, neuromorphic sensors implement the biological concept of spike-based output to generate sparse output data that corresponds to a certain sensing event. The operation principle applied in these sensors supports reduced power consumption with operating efficiency comparable to conventional sensors. Although neuromorphic sensors such as Dynamic Vision Sensor (DVS), Dynamic and Active pixel Vision Sensor (DAVIS) and AEREAR2 are steadily expanding their scope of application in real-world systems, the lack of spike-based data processing algorithms and complex interfacing methods restricts its applications in low-cost standalone autonomous systems. This research addresses the issue of interfacing between neuromorphic sensors and digital neuromorphic circuits. Current interfacing methods of these sensors are dependent on computers for output data processing. This approach restricts the portability of these sensors, limits their application in a standalone system and increases the overall cost of such systems. The proposed methodology simplifies the interfacing of these sensors with digital neuromorphic processors by utilizing AER communication protocols and neuromorphic hardware developed under the Convolution AER Vision Architecture for Real-time (CAVIAR) project. The proposed interface is simulated using a JAVA model that emulates a typical spikebased output of a neuromorphic sensor, in this case an olfactory sensor, and functions that process this data based on supervised learning. The successful implementation of this simulation suggests that the methodology is a practical solution and can be implemented in hardware. The JAVA simulation is compared to a similar model developed in Nengo, a standard large-scale neural simulation tool. The successful completion of this research contributes towards expanding the scope of application of neuromorphic sensors in standalone intelligent systems. The easy interfacing method proposed in this thesis promotes the portability of these sensors by eliminating the dependency on computers for output data processing. The inclusion of neuromorphic Field Programmable Gate Array (FPGA) board allows reconfiguration and deployment of learning algorithms to implement adaptable systems. These low-power systems can be widely applied in biosecurity and environmental monitoring. With this thesis, we suggest directions for future research in neuromorphic standalone systems based on neuromorphic olfaction

    FPGA ACCELERATION OF A CORTICAL AND A MATCHED FILTER-BASED ALGORITHM

    Get PDF
    Digital image processing is a widely used and diverse field. It is used in a broad array of areas such as tracking and detection, object avoidance, computer vision, and numerous other applications. For many image processing tasks, the computations can become time consuming. Therefore, a means for accelerating the computations would be beneficial. Using that as motivation, this thesis examines the acceleration of two distinctly different image processing applications. The first image processing application examined is a recent neocortex inspired cognitive model geared towards pattern recognition as seen in the visual cortex. For this model, both software and reconfigurable logic based FPGA implementations of the model are examined on a Cray XD1. Results indicate that hardware-acceleration can provide average throughput gains of 75 times over software-only implementations of the networks examined when utilizing the full resources of the Cray XD1. The second image processing application examined is matched filter-based position detection. This approach is at the heart of the automatic alignment algorithm currently being tested in the National Ignition Faculty presently under construction at the Lawrence Livermore National Laboratory. To reduce the processing time of the match filtering, a reconfigurable logic architecture was developed. Results show that the reconfigurable logic architecture provides a speedup of approximately 253 times over an optimized software implementation

    Low-power neuromorphic sensor fusion for elderly care

    Get PDF
    Smart wearable systems have become a necessary part of our daily life with applications ranging from entertainment to healthcare. In the wearable healthcare domain, the development of wearable fall recognition bracelets based on embedded systems is getting considerable attention in the market. However, in embedded low-power scenarios, the sensor’s signal processing has propelled more challenges for the machine learning algorithm. Traditional machine learning method has a huge number of calculations on the data classification, and it is difficult to implement real-time signal processing in low-power embedded systems. In an embedded system, ensuring data classification in a low-power and real-time processing to fuse a variety of sensor signals is a huge challenge. This requires the introduction of neuromorphic computing with software and hardware co-design concept of the system. This thesis is aimed to review various neuromorphic computing algorithms, research hardware circuits feasibility, and then integrate captured sensor data to realise data classification applications. In addition, it has explored a human being benchmark dataset, which is following defined different levels to design the activities classification task. In this study, firstly the data classification algorithm is applied to human movement sensors to validate the neuromorphic computing on human activity recognition tasks. Secondly, a data fusion framework has been presented, it implements multiple-sensing signals to help neuromorphic computing achieve sensor fusion results and improve classification accuracy. Thirdly, an analog circuits module design to carry out a neural network algorithm to achieve low power and real-time processing hardware has been proposed. It shows a hardware/software co-design system to combine the above work. By adopting the multi-sensing signals on the embedded system, the designed software-based feature extraction method will help to fuse various sensors data as an input to help neuromorphic computing hardware. Finally, the results show that the classification accuracy of neuromorphic computing data fusion framework is higher than that of traditional machine learning and deep neural network, which can reach 98.9% accuracy. Moreover, this framework can flexibly combine acquisition hardware signals and is not limited to single sensor data, and can use multi-sensing information to help the algorithm obtain better stability

    An investigation into adaptive power reduction techniques for neural hardware

    No full text
    In light of the growing applicability of Artificial Neural Network (ANN) in the signal processing field [1] and the present thrust of the semiconductor industry towards lowpower SOCs for mobile devices [2], the power consumption of ANN hardware has become a very important implementation issue. Adaptability is a powerful and useful feature of neural networks. All current approaches for low-power ANN hardware techniques are ‘non-adaptive’ with respect to the power consumption of the network (i.e. power-reduction is not an objective of the adaptation/learning process). In the research work presented in this thesis, investigations on possible adaptive power reduction techniques have been carried out, which attempt to exploit the adaptability of neural networks in order to reduce the power consumption. Three separate approaches for such adaptive power reduction are proposed: adaptation of size, adaptation of network weights and adaptation of calculation precision. Initial case studies exhibit promising results with significantpower reduction
    • …
    corecore