64 research outputs found

    Design of hardware architectures for HMM–based signal processing systems with applications to advanced human-machine interfaces

    Get PDF
    In questa tesi viene proposto un nuovo approccio per lo sviluppo di interfacce uomo–macchina. In particolare si tratta il caso di sistemi di pattern recognition che fanno uso di Hidden Markov Models per la classificazione. Il progetto di ricerca è partito dall’ideazione di nuove tecniche per la realizzazione di sistemi di riconoscimento vocale per parlato spontaneo. Gli HMM sono stati scelti come lo strumento algoritmico di base per la realizzazione del sistema. Dopo una fase di studio preliminare gli obiettivi sono stati estesi alla realizzazione di una architettura hardware in grado di fornire uno strumento riconfigurabile che possa essere utilizzato non solo per il riconoscimento vocale, ma in qualsiasi tipo di classificatore basato su HMM. Il lavoro si concentra quindi sullo sviluppo di architetture hardware dedicate, ma nuovi risultati sono stati ottenuti anche a livello di applicazione per quanto riguarda la classificazione di segnali elettroencefalografici attraverso gli HMM. Innanzitutto state sviluppata una architettura a livello di sistema applicabile a qualsiasi sistema di pattern recognition che faccia usi di HMM. L’architettura stata concepita in modo tale da essere utilizzabile come un sistema stand–alone. Definita l’architettura, un processore hardware per HMM, completamente riconfigurabile, stato decritto in linguaggio VHDL e simulato con successo. Un array parallelo di questi processori costituisce di fatto il nucleo di processamento dell’architettura sviluppata. Sulla base del progetto in VHDL, due piattaforme di prototipaggio rapido basate su FPGA sono state selezionate per dei test di implementazione. Diverse configurazioni costituite da array paralleli di processori HMM sono state implementate su FPGA. Le soluzioni che offrivano un miglior compromesso tra prestazioni e quantità di risorse hardware utilizzate sono state selezionate per ulteriori analisi. Un sistema software per il pattern recognition basato su HMM stato scelto come sistema di riferimento per verificare la corretta funzionalità delle architetture implementate. Diversi test sono stati progettati per validare che il funzionamento del sistema corrispondesse alle specifiche iniziali. Le versioni implementate del sistema sono state confrontate con il software di riferimento sulla base dei risultati forniti dai test. Dal confronto è stato possibile appurare che le architetture sviluppate hanno un comportamento corrispondente a quello richiesto. Infine le implementazioni dell’array parallelo di processori HMM `e sono state applicate a due applicazioni reali: un riconoscitore vocale, ed un classificatore per interfacce basate su segnali elettroencefalografici. In entrambi i casi l’architettura si è dimostrata in grado di gestire l’applicazione senza alcun problema. L’uso del processamento hardware per il riconoscimento vocale apre di fatto la strada a nuovi sviluppi nel campo grazie al notevole incremento di prestazioni ottenibili in termini di tempo di esecuzione. L’applicazione al processamento dell’EEG, invece, introduce di fatto un approccio completamente nuovo alla classificazione di questo tipo di segnali, e mostra come in futuro potrebbe essere possibile lo sviluppo di interfacce basate sulla classificazione dei segnali generati dal pensiero spontaneo. I possibili sviluppi del lavoro iniziato con questa tesi sono molteplici. Una direzione possibile è quella dell’implementazione completa dell’architettura proposta come un sistema stand–alone riconfigurabile per l’accelerazione di sistemi per pattern recognition di qualsiasi natura purchè basati su HMM. Le potenzialità di tale sistema renderebbero possibile la realizzazione di classificatiori in tempo reale con un alto grado di complessità, e quindi allo sviluppo di interfacce realmente multimodali, con una vasta gamma di applicazioni, dai sistemi di per lo spazio a quelli di supporto per persone disabili.In this thesis a new approach is described for the development of human–computer interfaces. In particular the case of pattern recognition systems based on Hidden Markov Models have been taken into account. The research started from he development of techniques for the realization of natural language speech recognition systems. The Hidden Markov Model (HMM) was chosen as the main algorithmic tool to be used to build the system. After the early work the goal was extended to the development of an hardware architecture that provided a reconfigurable tool to be used in any pattern recognition task, and not only in speech recognition. The whole work is thus focused on the development of dedicated hardware architectures, but also some new results have been obtained on the classification of electroencephalographic signals through the use of HMMs. Firstly a system–level architecture has been developed to be used in HMM based pattern recognition systems. The architecture has been conceived in order to be able to work as a stand–alone system. Then a VHDL description has been made of a flexible and completely reconfigurable hardware HMM processor and the design was successfully simulated. A parallel array of these processors is actually the core processing block of the developed architecture. Then two suitable FPGA based, fast prototyping platforms have been identified to be the targets for the implementation tests. Different configurations of parallel HMM processor arrays have been set up and mapped on the target FPGAs. Some solutions have been selected to be the best in terms of balance between performance and resources utilization. Furthermore a software HMM based pattern recognition system has been chosen to be the reference system for the functionality of the implemented subsystems. A set of tests have been developed with the aim to test the correct functionality of the hardware. The implemented system was compared to the reference system on the basis of the tests’ results, and it was found that the behavior was the one expected and the required functionality was correctly achieved. Finally the implementation of the parallel HMM array was tested through its application to two real–world applications: a speech recognition task and a brain–computer interface task. In both cases the architecture showed to be functionally suitable and powerful enough to handle the task without problems. The application of the hardware processing to speech recognition opens new perspectives in the design of this kind of systems because of the dramatic increment in performance. The application to brain–computer interface is really interesting because of a new approach in the classification of EEG that shows how could be possible a future development of interfaces based on the classification of spontaneous thought. The possible evolution directions of the work started with this thesis are many. Effort could be spent of the implementation of the developed architecture as a stand–alone reconfigurable system suitable for any kind of HMM–based pattern recognition task. The potential performance of such a system could open the way to extremely complex real–time pattern recognition systems, and thus to the realization of truly multimodal interfaces, with a variety of applications, from space to aid systems for the impaired

    Hardware acceleration of the trace transform for vision applications

    Get PDF
    Computer Vision is a rapidly developing field in which machines process visual data to extract meaningful information. Digitised images in their pixels and bits serve no purpose of their own. It is only by interpreting the data, and extracting higher level information that a scene can be understood. The algorithms that enable this process are often complex, and data-intensive, limiting the processing rate when implemented in software. Hardware-accelerated implementations provide a significant performance boost that can enable real- time processing. The Trace Transform is a newly proposed algorithm that has been proven effective in image categorisation and recognition tasks. It is flexibly defined allowing the mathematical details to be tailored to the target application. However, it is highly computationally intensive, which limits its applications. Modern heterogeneous FPGAs provide an ideal platform for accelerating the Trace transform for real-time performance, while also allowing an element of flexibility, which highly suits the generality of the Trace transform. This thesis details the implementation of an extensible Trace transform architecture for vision applications, before extending this architecture to a full flexible platform suited to the exploration of Trace transform applications. As part of the work presented, a general set of architectures for large-windowed median and weighted median filters are presented as required for a number of Trace transform implementations. Finally an acceleration of Pseudo 2-Dimensional Hidden Markov Model decoding, usable in a person detection system, is presented. Such a system can be used to extract frames of interest from a video sequence, to be subsequently processed by the Trace transform. All these architectures emphasise the need for considered, platform-driven design in achieving maximum performance through hardware acceleration

    Design of hardware architectures for HMM–based signal processing systems with applications to advanced human-machine interfaces

    Get PDF
    In questa tesi viene proposto un nuovo approccio per lo sviluppo di interfacce uomo–macchina. In particolare si tratta il caso di sistemi di pattern recognition che fanno uso di Hidden Markov Models per la classificazione. Il progetto di ricerca è partito dall’ideazione di nuove tecniche per la realizzazione di sistemi di riconoscimento vocale per parlato spontaneo. Gli HMM sono stati scelti come lo strumento algoritmico di base per la realizzazione del sistema. Dopo una fase di studio preliminare gli obiettivi sono stati estesi alla realizzazione di una architettura hardware in grado di fornire uno strumento riconfigurabile che possa essere utilizzato non solo per il riconoscimento vocale, ma in qualsiasi tipo di classificatore basato su HMM. Il lavoro si concentra quindi sullo sviluppo di architetture hardware dedicate, ma nuovi risultati sono stati ottenuti anche a livello di applicazione per quanto riguarda la classificazione di segnali elettroencefalografici attraverso gli HMM. Innanzitutto state sviluppata una architettura a livello di sistema applicabile a qualsiasi sistema di pattern recognition che faccia usi di HMM. L’architettura stata concepita in modo tale da essere utilizzabile come un sistema stand–alone. Definita l’architettura, un processore hardware per HMM, completamente riconfigurabile, stato decritto in linguaggio VHDL e simulato con successo. Un array parallelo di questi processori costituisce di fatto il nucleo di processamento dell’architettura sviluppata. Sulla base del progetto in VHDL, due piattaforme di prototipaggio rapido basate su FPGA sono state selezionate per dei test di implementazione. Diverse configurazioni costituite da array paralleli di processori HMM sono state implementate su FPGA. Le soluzioni che offrivano un miglior compromesso tra prestazioni e quantità di risorse hardware utilizzate sono state selezionate per ulteriori analisi. Un sistema software per il pattern recognition basato su HMM stato scelto come sistema di riferimento per verificare la corretta funzionalità delle architetture implementate. Diversi test sono stati progettati per validare che il funzionamento del sistema corrispondesse alle specifiche iniziali. Le versioni implementate del sistema sono state confrontate con il software di riferimento sulla base dei risultati forniti dai test. Dal confronto è stato possibile appurare che le architetture sviluppate hanno un comportamento corrispondente a quello richiesto. Infine le implementazioni dell’array parallelo di processori HMM `e sono state applicate a due applicazioni reali: un riconoscitore vocale, ed un classificatore per interfacce basate su segnali elettroencefalografici. In entrambi i casi l’architettura si è dimostrata in grado di gestire l’applicazione senza alcun problema. L’uso del processamento hardware per il riconoscimento vocale apre di fatto la strada a nuovi sviluppi nel campo grazie al notevole incremento di prestazioni ottenibili in termini di tempo di esecuzione. L’applicazione al processamento dell’EEG, invece, introduce di fatto un approccio completamente nuovo alla classificazione di questo tipo di segnali, e mostra come in futuro potrebbe essere possibile lo sviluppo di interfacce basate sulla classificazione dei segnali generati dal pensiero spontaneo. I possibili sviluppi del lavoro iniziato con questa tesi sono molteplici. Una direzione possibile è quella dell’implementazione completa dell’architettura proposta come un sistema stand–alone riconfigurabile per l’accelerazione di sistemi per pattern recognition di qualsiasi natura purchè basati su HMM. Le potenzialità di tale sistema renderebbero possibile la realizzazione di classificatiori in tempo reale con un alto grado di complessità, e quindi allo sviluppo di interfacce realmente multimodali, con una vasta gamma di applicazioni, dai sistemi di per lo spazio a quelli di supporto per persone disabili.In this thesis a new approach is described for the development of human–computer interfaces. In particular the case of pattern recognition systems based on Hidden Markov Models have been taken into account. The research started from he development of techniques for the realization of natural language speech recognition systems. The Hidden Markov Model (HMM) was chosen as the main algorithmic tool to be used to build the system. After the early work the goal was extended to the development of an hardware architecture that provided a reconfigurable tool to be used in any pattern recognition task, and not only in speech recognition. The whole work is thus focused on the development of dedicated hardware architectures, but also some new results have been obtained on the classification of electroencephalographic signals through the use of HMMs. Firstly a system–level architecture has been developed to be used in HMM based pattern recognition systems. The architecture has been conceived in order to be able to work as a stand–alone system. Then a VHDL description has been made of a flexible and completely reconfigurable hardware HMM processor and the design was successfully simulated. A parallel array of these processors is actually the core processing block of the developed architecture. Then two suitable FPGA based, fast prototyping platforms have been identified to be the targets for the implementation tests. Different configurations of parallel HMM processor arrays have been set up and mapped on the target FPGAs. Some solutions have been selected to be the best in terms of balance between performance and resources utilization. Furthermore a software HMM based pattern recognition system has been chosen to be the reference system for the functionality of the implemented subsystems. A set of tests have been developed with the aim to test the correct functionality of the hardware. The implemented system was compared to the reference system on the basis of the tests’ results, and it was found that the behavior was the one expected and the required functionality was correctly achieved. Finally the implementation of the parallel HMM array was tested through its application to two real–world applications: a speech recognition task and a brain–computer interface task. In both cases the architecture showed to be functionally suitable and powerful enough to handle the task without problems. The application of the hardware processing to speech recognition opens new perspectives in the design of this kind of systems because of the dramatic increment in performance. The application to brain–computer interface is really interesting because of a new approach in the classification of EEG that shows how could be possible a future development of interfaces based on the classification of spontaneous thought. The possible evolution directions of the work started with this thesis are many. Effort could be spent of the implementation of the developed architecture as a stand–alone reconfigurable system suitable for any kind of HMM–based pattern recognition task. The potential performance of such a system could open the way to extremely complex real–time pattern recognition systems, and thus to the realization of truly multimodal interfaces, with a variety of applications, from space to aid systems for the impaired

    A Vectorized Processing Algorithm for Continuous Speech Recognition and Associated FPGA-Based Architecture

    Get PDF
    This work analyzes Continuous Automatic Speech Recognition (CSR) and in contrast to prior work, it shows that the CSR algorithms can be specified in a highly parallel form. Through use of the MATLAB software package, the parallelism is exploited to create a compact, vectorized algorithm that is able to execute the CSR task. After an in-depth analysis of the SPHINX 3 Large Vocabulary Continuous Speech Recognition (LVCSR) engine the major functional units were redesigned in the MATLAB environment, taking special effort to flatten the algorithms and restructure the data to allow for matrix-based computations. Performing this conversion resulted in reducing the original 14,000 lines of C++ code into less then 200 lines of highly-vectorized operations, substantially increasing the potential Instruction Line Parallelism of the system. Using this vector model as a baseline, a custom hardware system was then created that is capable of performing the speech recognition task in real-time on a Xilinx Virtex-4 FPGA device. Through the creation independent hardware engines for each stage of the speech recognition process, the throughput of each is maximized by customizing the logic to the specific task. Further, a unique architecture was designed that allows for the creation of a static data path throughout the hardware, effectively removing the need for complex bus arbitration in the system. By making using of shared memory resources and applying a token passing scheme to the system, both the data movement within the design as well as the amount of active data are continually minimized during run-time. These results provide a novel method for perform speech recognition in both hardware and software, helping to further the development of systems capable of recognizing human speech

    2.5D Chiplet Architecture for Embedded Processing of High Velocity Streaming Data

    Get PDF
    This dissertation presents an energy efficient 2.5D chiplet-based architecture for real-time probabilistic processing of high-velocity sensor data, from an autonomous real-time ubiquitous surveillance imaging system. This work addresses problems at all levels of description. At the lowest physical level, new standard cell libraries have been developed for ultra-low voltage CMOS synthesis, as well as custom SRAM memory blocks, and mixed-signal physical true random number generators based on the perturbation of Sigma-Delta structures using random telegraph noise (RTN) in single transistor devices. At the chip level architecture, an innovative compact buffer-less switched circuit mesh network on chip (NoC) capable of reaching very high throughput (1.6Tbps), finite packet delay delivery, free from packet dropping, and free from dead-locks and live-locks, was designed for this chiplet-based solution. Additionally, a second NoC connecting processors in the network, was implemented based on token-rings, allowing access to external DDR memory. Furthermore, a new clock tree distribution network, and a wide bandwidth DRAM physical interface have been designed to address the data flow requirements within and across chiplets. At the algorithm and representation levels, the Online Change Point Detection (CPD) algorithm has been implemented for on-line learning of background-foreground segmentation. Instead of using traditional binary representation of numbers, this architecture relies on unconventional processing of signals using a bio-inspired (spike-based) unary representation of numbers, where these numbers are represented in a stochastic stream of Bernoulli random variables. By using this representation, probabilistic algorithms can be executed in a native architecture with precision on demand, where if more accuracy is required, more computational time and power can be allocated. The SoC chiplet architecture has been extensively simulated and validated using state of the art CAD methodology, and has been submitted to fabrication in a dedicated 55nm GF CMOS technology wafer run. Experimental results from fabricated test chips in the same technology are also presented

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Digital Microphone Array - Design, Implementation and Speech Recognition Experiments

    Get PDF
    The instrumented meeting room of the future will help meetings to be more efficient and productive. One of the basic components of the instrumented meeting room is the speech recording device, in most cases a microphone array. The two basic requirements for this microphone array are portability and cost-efficiency, neither of which are provided by current commercially available arrays. This will change in the near future thanks to the availability of new digital MEMS microphones. This dissertation reports on the first successful implementation of a digital MEMS microphone array. This digital MEMS microphone array was designed, implemented, tested and evaluated and successfully compared with an existing analogue microphone array using a state-of-the-art ASR system and adaptation algorithms. The newly built digital MEMS microphone array compares well with the analogue microphone array on the basis of the word error rate achieved in an automated speech recognition system and is highly portable and economical

    An FPGA-based syntactic parser for large size real-life context-free grammars

    Get PDF
    This thesis is at the crossroad between Natural Language Processing (NLP) and digital circuit design. It aims at delivering a custom hardware coprocessor for accelerating natural language parsing. The coprocessor has to parse real-life natural language and is targeted to be useful in several NLP applications that are time constrained or need to process large amounts of data. More precisely, the three goals of this thesis are: (1) to propose an efficient FPGA-based coprocessor for natural language syntactic analysis that can deal with inputs in the form of word lattices, (2) to implement the coprocessor in a hardware tool ready for integration within an ordinary desktop computer and (3) to offer an interface (i.e. software library) between the hardware tool and a potential natural language software application, running on the desktop computer. The Field Programmable Gate Array (FPGA) technology has been chosen as the core of the coprocessor implementation due to its ability to efficiently exploit all levels of parallelism available in the implemented algorithms in a cost-effective solution. In addition, the FPGA technology makes it possible to efficiently design and test such a hardware coprocessor. A final reason is that the future general-purpose processors are expected to contain reconfigurable resources. In such a context, an IP core implementing an efficient context-free parser ready to be configured within the reconfigurable resources of the general-purpose processor would be a support for any application relying on context-free parsing and running on that general-purpose processor. The context-free grammar parsing algorithms that have been implemented are the standard CYK algorithm and an enhanced version of the CYK algorithm developed at the EPFL Artificial Intelligence Laboratory. These algorithms were selected (1) due to their intrinsic properties of regular data flow and data processing that make them well suited for a hardware implementation, (2) for their property of producing partial parse trees which makes them adapted for further shallow parsing and (3) for being able to parse word lattices

    A Practical Investigation into Achieving Bio-Plausibility in Evo-Devo Neural Microcircuits Feasible in an FPGA

    Get PDF
    Many researchers has conjectured, argued, or in some cases demonstrated, that bio-plausibility can bring about emergent properties such as adaptability, scalability, fault-tolerance, self-repair, reliability, and autonomy to bio-inspired intelligent systems. Evolutionary-developmental (evo-devo) spiking neural networks are a very bio-plausible mixture of such bio-inspired intelligent systems that have been proposed and studied by a few researchers. However, the general trend is that the complexity and thus the computational cost grow with the bio-plausibility of the system. FPGAs (Field- Programmable Gate Arrays) have been used and proved to be one of the flexible and cost efficient hardware platforms for research' and development of such evo-devo systems. However, mapping a bio-plausible evo-devo spiking neural network to an FPGA is a daunting task full of different constraints and trade-offs that makes it, if not infeasible, very challenging. This thesis explores the challenges, trade-offs, constraints, practical issues, and some possible approaches in achieving bio-plausibility in creating evolutionary developmental spiking neural microcircuits in an FPGA through a practical investigation along with a series of case studies. In this study, the system performance, cost, reliability, scalability, availability, and design and testing time and complexity are defined as measures for feasibility of a system and structural accuracy and consistency with the current knowledge in biology as measures for bio-plausibility. Investigation of the challenges starts with the hardware platform selection and then neuron, cortex, and evo-devo models and integration of these models into a whole bio-inspired intelligent system are examined one by one. For further practical investigation, a new PLAQIF Digital Neuron model, a novel Cortex model, and a new multicellular LGRN evo-devo model are designed, implemented and tested as case studies. Results and their implications for the researchers, designers of such systems, and FPGA manufacturers are discussed and concluded in form of general trends, trade-offs, suggestions, and recommendations
    • …
    corecore