12 research outputs found

    Architectures matérielles pour la technologie W-CDMA étendue aux systèmes multi-antennes

    Get PDF
    Depuis une dizaine d 'années, l'avènement des techniques multi-antennes (ou MIMO) pour les communications sans fil , mobiles ou fixes , a révolutionné les possibilités offertes pour de nombreux domaines d 'application des télécommunications. La disposition de plusieurs antennes de part et d 'autre du lien augmente considérablement la capacité des systèmes sans fil. Cependant, les algorithmes numériques à mettre en oeuvre pour réaliser ces systèmes sont autrement complexes et constituent un challenge quant à la définition d'architectures matérielles performantes. L'objectif du travail présent repose précisément sur la définition optimale de solutions architecturales, dans un contexte CDMA, pour contrer cette problématique. Le premier aspect de ce travail porte sur une étude approfondie des algorithmes spatio-temporels et des méthodes de conception en vue d'une implantation matérielle efficace. De nombreux schémas de détection sont proposés dans la littérature et sont applicables suivant trois critères qui sont: la qualité de service, le débit binaire et la complexité algorithmique. Cette dernière constitue une contrainte forte pour une mise en application à faible coût de terminaux mobiles intégrant ces applications. Aussi, il est nécessaire de disposer d'outils performants pour simuler, évaluer et affiner (prototypage rapide) ces nouveaux systèmes, candidats probables pour les télécommunications de quatrième génération. Le second aspect concerne la réalisation d'un transcepteur multi-antennes sans codage de canal, intégrant la technologie d'accès multiple par répartition de codes dans le cas d'un canal large bande. Un système mono-antenne WCDMA, généralisable à un nombre quelconque d'antennes, a été intégré et simulé au sein de la plate-forme de prototypage rapide Lyrtech. L'architecture développée intègre les principaux modules du traitement en bande de base, à savoir le filtrage de Nyquist, la détection des multiples trajets suivie de l'étape de détection. Le prototype MIMO-WCDMA développé est caractérisé par sa flexibilité suivant le nombre de voies e~trantes, le format d'entrée des échantillons, les caractéristiques du canal sans fil et la technologie ciblée (ASIC, FPGA). Le troisième aspect se veut plus prospectif en détaillant de nouveaux mécanismes pour réduire le coût matériel des systèmes multi-antennes. Le principe d'allocation adaptative de la virgule fixe est présenté dans le but d'adapter le codage des données suivant les caractéristiques du canal sans fil et de minimiser en conséquence la complexité du circuit. D'autre part, le concept d'architectures adaptatives est proposé afin de minimiser l'énergie consommée au sein d 'un système embarqué suivant le contexte d'application

    Efficient FPGA implementation and power modelling of image and signal processing IP cores

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are the technology of choice in a number ofimage and signal processing application areas such as consumer electronics, instrumentation, medical data processing and avionics due to their reasonable energy consumption, high performance, security, low design-turnaround time and reconfigurability. Low power FPGA devices are also emerging as competitive solutions for mobile and thermally constrained platforms. Most computationally intensive image and signal processing algorithms also consume a lot of power leading to a number of issues including reduced mobility, reliability concerns and increased design cost among others. Power dissipation has become one of the most important challenges, particularly for FPGAs. Addressing this problem requires optimisation and awareness at all levels in the design flow. The key achievements of the work presented in this thesis are summarised here. Behavioural level optimisation strategies have been used for implementing matrix product and inner product through the use of mathematical techniques such as Distributed Arithmetic (DA) and its variations including offset binary coding, sparse factorisation and novel vector level transformations. Applications to test the impact of these algorithmic and arithmetic transformations include the fast Hadamard/Walsh transforms and Gaussian mixture models. Complete design space exploration has been performed on these cores, and where appropriate, they have been shown to clearly outperform comparable existing implementations. At the architectural level, strategies such as parallelism, pipelining and systolisation have been successfully applied for the design and optimisation of a number of cores including colour space conversion, finite Radon transform, finite ridgelet transform and circular convolution. A pioneering study into the influence of supply voltage scaling for FPGA based designs, used in conjunction with performance enhancing strategies such as parallelism and pipelining has been performed. Initial results are very promising and indicated significant potential for future research in this area. A key contribution of this work includes the development of a novel high level power macromodelling technique for design space exploration and characterisation of custom IP cores for FPGAs, called Functional Level Power Analysis and Modelling (FLPAM). FLPAM is scalable, platform independent and compares favourably with existing approaches. A hybrid, top-down design flow paradigm integrating FLPAM with commercially available design tools for systematic optimisation of IP cores has also been developed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Electrical Impedance Tomography/Spectroscopy (EITS): a Code Division Multiplexed (CDM) approach

    Get PDF
    Electrical Impedance Tomography and Spectroscopy (EITS) is a noninvasive imaging technique that creates images of cross-sections "tomos" of objects by discriminating them based on their electrical impedance. This thesis investigated and successfully confirmed the use of Code Division Multiplexing (CDM) using Gold codes in Electrical Impedance Tomography and Spectroscopy. The results obtained showed 3.5% and 6.2% errors in determining the position and size of imaged anomalies respectively, with attainable imaging speed of 462 frames/second. These results are better, compared to those reported when using Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM).This new approach provides a more robust mode of EITS for fast changing dynamic systems by eliminating temporal data inconsistencies. Furthermore, it enables robust use of frequency difference imaging and spectroscopy in EITS by eliminating frequency data inconsistencies. In this method of imaging, electric current patterns are safely injected into the imaged object by a set of electrodes arranged in a single plane on the objects surface, for 2-Dimensional (2D) imaging. For 3-Dimensional (3D) imaging, more electrode planes are used on the objects surface. The injected currents result in measurable voltages on the objects surface. Such voltages are measured, and together with the input currents, and a Finite Element Model (FEM) of the object, used to reconstruct an impedance image of the cross-sectional contents of the imaged object. The reconstruction process involves the numerical solutions of the forward problem; using Finite Element solvers and the resulting ill-posed inverse problem using iterative Optimization or Computational Intelligence methods. This method has applications mainly in the Biomedical imaging and Process monitoring fields. The primary interests of the author are, in imaging and diagnosis of cancer, neonatal pneumonia and neurological disorders which are leading causes of death in Africa and world-wide

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    CACIC 2015 : XXI Congreso Argentino de Ciencias de la Computación. Libro de actas

    Get PDF
    Actas del XXI Congreso Argentino de Ciencias de la Computación (CACIC 2015), realizado en Sede UNNOBA Junín, del 5 al 9 de octubre de 2015.Red de Universidades con Carreras en Informática (RedUNCI

    Storia delle telecomunicazioni

    Get PDF
    Focusing on the history of scientific and technological development over recent centuries, the book is dedicated to the history of telecommunications, where Italy has always been in the vanguard, and is presented by many of the protagonists of the last half century. The book is divided into five sections. The first, dealing with the origins, starts from the scientific bases of the evolution of telecommunications in the nineteenth century (Bucci), addressing the developments of scientific thought that led to the revolution of the theory of fields (Morando), analysing the birth of the three fundamental forms of communication – telegraph (Maggi), telephone (Del Re) and radio (Falciasecca) – and ending with the contribution made by the Italian Navy to the development of telecommunications (Carulli, Pelosi, Selleri, Tiberio). The second section, on technical and scientific developments, presents the numerical processing of signals (Rocca), illustrating the genesis and metamorphosis of transmission (Pupolin, Benedetto, Mengali, Someda, Vannucchi), network packets (Marsan, Guadagni, Lenzini), photonics in telecommunications (Prati) and addresses the issue of research within the institutions (Fedi-Morello), dwelling in particular on the CSELT (Mossotto). The next section deals with the sectors of application, offering an overview of radio, television and the birth of digital cinema (Vannucchi, Visintin), military communications (Maestrini, Costamagna), the development of radar (Galati) and spatial telecommunications (Tartara, Marconicchio). Section four, on the organisation of the services and the role of industry, outlines the rise and fall of the telecommunications industries in Italy (Randi), dealing with the telecommunications infrastructures (Caroppo, Gamerro), the role of the providers in national communications (Gerarduzzi), the networks and the mobile and wireless services (Falciasecca, Ongaro) and finally taking a look towards the future from the perspective of the last fifty years (Vannucchi). The last section, dealing with training and dissemination, offers an array of food for thought: university training in telecommunications, with focus on the evolution of legislation and on the professional profiles (Roveri), social and cultural aspects (Longo and Crespellani) as well as a glance over the most important museums, collections and documentary sources for telecommunications in Italy (Lucci, Savini, Temporelli, Valotti). The book is designed to offer a compendium comprising different analytical approaches, and aims to foster an interest in technology in the new generations, in the hope of stimulating potentially innovative research
    corecore