20 research outputs found

    Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments

    Get PDF
    This investigation of the leech heartbeat neural network system led to the development of a low resources, real-time, biomimetic digital hardware for use in hybrid experiments. The leech heartbeat neural network is one of the simplest central pattern generators (CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech neural network system was previously investigated and this CPG formalized in the Hodgkin–Huxley neural model (HH), the most complex devised to date. However, the resources required for a neural model are proportional to its complexity. In response to this issue, this article describes a biomimetic implementation of a network of 240 CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and proposes a new synapse model: activity-dependent depression synapse. The network implementation architecture operates on a single computation core. This digital system works in real-time, requires few resources, and has the same bursting activity behavior as the complex model. The implementation of this CPG was initially validated by comparing it with a simulation of the complex model. Its activity was then matched with pharmacological data from the rat spinal cord activity. This digital system opens the way for future hybrid experiments and represents an important step toward hybridization of biological tissue and artificial neural networks. This CPG network is also likely to be useful for mimicking the locomotion activity of various animals and developing hybrid experiments for neuroprosthesis development

    Spiking Central Pattern Generators through Reverse Engineering of Locomotion Patterns

    Get PDF
    In robotics, there have been proposed methods for locomotion of nonwheeled robots based on artificial neural networks; those built with plausible neurons are called spiking central pattern generators (SCPGs). In this chapter, we present a generalization of reported deterministic and stochastic reverse engineering methods for automatically designing SCPG for legged robots locomotion systems; such methods create a spiking neural network capable of endogenously and periodically replicating one or several rhythmic signal sets, when a spiking neuron model and one or more locomotion gaits are given as inputs. Designed SCPGs have been implemented in different robotic controllers for a variety of robotic platforms. Finally, some aspects to improve and/or complement these SCPG-based locomotion systems are pointed out

    Digital Implementation of Bio-Inspired Spiking Neuronal Networks

    Get PDF
    Spiking Neural Network as the third generation of artificial neural networks offers a promising solution for future computing, prosthesis, robotic and image processing applications. This thesis introduces digital designs and implementations of building blocks of a Spiking Neural Networks (SNNs) including neurons, learning rule, and small networks of neurons in the form of a Central Pattern Generator (CPG) which can be used as a module in control part of a bio-inspired robot. The circuits have been developed using Verilog Hardware Description Language (VHDL) and simulated through Modelsim and compiled and synthesised by Altera Qurtus Prime software for FPGA devices. Astrocyte as one of the brain cells controls synaptic activity between neurons by providing feedback to neurons. A novel digital hardware is proposed for neuron-synapseastrocyte network based on the biological Adaptive Exponential (AdEx) neuron and Postnov astrocyte cell model. The network can be used for implementation of large scale spiking neural networks. Synthesis of the designed circuits shows that the designed astrocyte circuit is able to imitate its biological model and regulate the synapse transmission, successfully. In addition, synthesis results confirms that the proposed design uses less than 1% of available resources of a VIRTEX II FPGA which saves up to 4.4% of FPGA resources in comparison to other designs. Learning rule is an essential part of every neural network including SNN. In an SNN, a special type of learning called Spike Timing Dependent Plasticity (STDP) is used to modify the connection strength between the spiking neurons. A pair-based STDP (PSTDP) works on pairs of spikes while a Triplet-based STDP (TSTDP) works on triplets of spikes to modify the synaptic weights. A low cost, accurate, and configurable digital architectures are proposed for PSTDP and TSTDP learning models. The proposed circuits have been compared with the state of the art methods like Lookup Table (LUT), and Piecewise Linear approximation (PWL). The circuits can be employed in a large-scale SNN implementation due to their compactness and configurability. Most of the neuron models represented in the literature are introduced to model the behavior of a single neuron. Since there is a large number of neurons in the brain, a population-based model can be helpful in better understanding of the brain functionality, implementing cognitive tasks and studying the brain diseases. Gaussian Wilson-Cowan model as one of the population-based models represents neuronal activity in the neocortex region of the brain. A digital model is proposed for the GaussianWilson-Cowan and examined in terms of dynamical and timing behavior. The evaluation indicates that the proposed model is able to generate the dynamical behavior as the original model is capable of. Digital architectures are implemented on an Altera FPGA board. Experimental results show that the proposed circuits take maximum 2% of the resources of a Stratix Altera board. In addition, static timing analysis indicates that the circuits can work in a maximum frequency of 244 MHz

    Neuromorphic auditory computing: towards a digital, event-based implementation of the hearing sense for robotics

    Get PDF
    In this work, it is intended to advance on the development of the neuromorphic audio processing systems in robots through the implementation of an open-source neuromorphic cochlea, event-based models of primary auditory nuclei, and their potential use for real-time robotics applications. First, the main gaps when working with neuromorphic cochleae were identified. Among them, the accessibility and usability of such sensors can be considered as a critical aspect. Silicon cochleae could not be as flexible as desired for some applications. However, FPGA-based sensors can be considered as an alternative for fast prototyping and proof-of-concept applications. Therefore, a software tool was implemented for generating open-source, user-configurable Neuromorphic Auditory Sensor models that can be deployed in any FPGA, removing the aforementioned barriers for the neuromorphic research community. Next, the biological principles of the animals' auditory system were studied with the aim of continuing the development of the Neuromorphic Auditory Sensor. More specifically, the principles of binaural hearing were deeply studied for implementing event-based models to perform real-time sound source localization tasks. Two different approaches were followed to extract inter-aural time differences from event-based auditory signals. On the one hand, a digital, event-based design of the Jeffress model was implemented. On the other hand, a novel digital implementation of the Time Difference Encoder model was designed and implemented on FPGA. Finally, three different robotic platforms were used for evaluating the performance of the proposed real-time neuromorphic audio processing architectures. An audio-guided central pattern generator was used to control a hexapod robot in real-time using spiking neural networks on SpiNNaker. Then, a sensory integration application was implemented combining sound source localization and obstacle avoidance for autonomous robots navigation. Lastly, the Neuromorphic Auditory Sensor was integrated within the iCub robotic platform, being the first time that an event-based cochlea is used in a humanoid robot. Then, the conclusions obtained are presented and new features and improvements are proposed for future works.En este trabajo se pretende avanzar en el desarrollo de los sistemas de procesamiento de audio neuromórficos en robots a través de la implementación de una cóclea neuromórfica de código abierto, modelos basados en eventos de los núcleos auditivos primarios, y su potencial uso para aplicaciones de robótica en tiempo real. En primer lugar, se identificaron los principales problemas a la hora de trabajar con cócleas neuromórficas. Entre ellos, la accesibilidad y usabilidad de dichos sensores puede considerarse un aspecto crítico. Los circuitos integrados analógicos que implementan modelos cocleares pueden no pueden ser tan flexibles como se desea para algunas aplicaciones específicas. Sin embargo, los sensores basados en FPGA pueden considerarse una alternativa para el desarrollo rápido y flexible de prototipos y aplicaciones de prueba de concepto. Por lo tanto, en este trabajo se implementó una herramienta de software para generar modelos de sensores auditivos neuromórficos de código abierto y configurables por el usuario, que pueden desplegarse en cualquier FPGA, eliminando las barreras mencionadas para la comunidad de investigación neuromórfica. A continuación, se estudiaron los principios biológicos del sistema auditivo de los animales con el objetivo de continuar con el desarrollo del Sensor Auditivo Neuromórfico (NAS). Más concretamente, se estudiaron en profundidad los principios de la audición binaural con el fin de implementar modelos basados en eventos para realizar tareas de localización de fuentes sonoras en tiempo real. Se siguieron dos enfoques diferentes para extraer las diferencias temporales interaurales de las señales auditivas basadas en eventos. Por un lado, se implementó un diseño digital basado en eventos del modelo Jeffress. Por otro lado, se diseñó una novedosa implementación digital del modelo de codificador de diferencias temporales y se implementó en FPGA. Por último, se utilizaron tres plataformas robóticas diferentes para evaluar el rendimiento de las arquitecturas de procesamiento de audio neuromórfico en tiempo real propuestas. Se utilizó un generador central de patrones guiado por audio para controlar un robot hexápodo en tiempo real utilizando redes neuronales pulsantes en SpiNNaker. A continuación, se implementó una aplicación de integración sensorial que combina la localización de fuentes de sonido y la evitación de obstáculos para la navegación de robots autónomos. Por último, se integró el Sensor Auditivo Neuromórfico dentro de la plataforma robótica iCub, siendo la primera vez que se utiliza una cóclea basada en eventos en un robot humanoide. Por último, en este trabajo se presentan las conclusiones obtenidas y se proponen nuevas funcionalidades y mejoras para futuros trabajos

    A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    Get PDF
    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control

    Digital neural circuits : from ions to networks

    Get PDF
    PhD ThesisThe biological neural computational mechanism is always fascinating to human beings since it shows several state-of-the-art characteristics: strong fault tolerance, high power efficiency and self-learning capability. These behaviours lead the developing trend of designing the next-generation digital computation platform. Thus investigating and understanding how the neurons talk with each other is the key to replicating these calculation features. In this work I emphasize using tailor-designed digital circuits for exactly implementing bio-realistic neural network behaviours, which can be considered a novel approach to cognitive neural computation. The first advance is that biological real-time computing performances allow the presented circuits to be readily adapted for real-time closed-loop in vitro or in vivo experiments, and the second one is a transistor-based circuit that can be directly translated into an impalpable chip for high-level neurologic disorder rehabilitations. In terms of the methodology, first I focus on designing a heterogeneous or multiple-layer-based architecture for reproducing the finest neuron activities both in voltage-and calcium-dependent ion channels. In particular, a digital optoelectronic neuron is developed as a case study. Second, I focus on designing a network-on-chip architecture for implementing a very large-scale neural network (e.g. more than 100,000) with human cognitive functions (e.g. timing control mechanism). Finally, I present a reliable hybrid bio-silicon closed-loop system for central pattern generator prosthetics, which can be considered as a framework for digital neural circuit-based neuro-prosthesis implications. At the end, I present the general digital neural circuit design principles and the long-term social impacts of the presented work
    corecore