55 research outputs found

    Gene expression reliability estimation through cluster-based analysis

    Get PDF
    Gene expression is the fundamental control of the structure and functions of the cellular versatility and adaptability of any organisms. The measurement of gene expressions is performed on images generated by optical inspection of microarray devices which allow the simultaneous analysis of thousands of genes. The images produced by these devices are used to calculate the expression levels of mRNA in order to draw diagnostic information related to human disease. The quality measures are mandatory in genes classification and in the decision-making diagnostic. However, microarrays are characterized by imperfections due to sample contaminations, scratches, precipitation or imperfect gridding and spot detection. The automatic and efficient quality measurement of microarray is needed in order to discriminate faulty gene expression levels. In this paper we present a new method for estimate the quality degree and the data's reliability of a microarray analysis. The efficiency of the proposed approach in terms of genes expression classification has been demonstrated through a clustering supervised analysis performed on a set of three different histological samples related to the Lymphoma's cancer diseas

    Performance comparison of image normalisation method for DNA microarray data

    Get PDF
    Normalisation is a process of removing systematic variation that affects measured gene expression levels in microarray experiment. The purpose is to get a more accurate DNA microarray result by deleting the systematic errors that may have occurred when making the DNA microarray slid. In this paper, four normalisation methods of Global, Lowess, Quantile and Print-tip are discussed, tested and their final results compared in the form of Matrixes and graphs. Ideal and real microarray slides have been used for this project. It was found that the Print-tip normalisation method showed the closest results to the real result for an ideal microarray slide and it has a straight median line final graph. The Print-tip normalisation method uses more than one normalization factor that is divided among intervals which are dependent on the values of the addition of red and green logarithm

    maigesPack: A Computational Environment for Microarray Data Analysis

    Full text link
    Microarray technology is still an important way to assess gene expression in molecular biology, mainly because it measures expression profiles for thousands of genes simultaneously, what makes this technology a good option for some studies focused on systems biology. One of its main problem is complexity of experimental procedure, presenting several sources of variability, hindering statistical modeling. So far, there is no standard protocol for generation and evaluation of microarray data. To mitigate the analysis process this paper presents an R package, named maigesPack, that helps with data organization. Besides that, it makes data analysis process more robust, reliable and reproducible. Also, maigesPack aggregates several data analysis procedures reported in literature, for instance: cluster analysis, differential expression, supervised classifiers, relevance networks and functional classification of gene groups or gene networks

    Preface

    Get PDF
    DAMSS-2018 is the jubilee 10th international workshop on data analysis methods for software systems, organized in Druskininkai, Lithuania, at the end of the year. The same place and the same time every year. Ten years passed from the first workshop. History of the workshop starts from 2009 with 16 presentations. The idea of such workshop came up at the Institute of Mathematics and Informatics. Lithuanian Academy of Sciences and the Lithuanian Computer Society supported this idea. This idea got approval both in the Lithuanian research community and abroad. The number of this year presentations is 81. The number of registered participants is 113 from 13 countries. In 2010, the Institute of Mathematics and Informatics became a member of Vilnius University, the largest university of Lithuania. In 2017, the institute changes its name into the Institute of Data Science and Digital Technologies. This name reflects recent activities of the institute. The renewed institute has eight research groups: Cognitive Computing, Image and Signal Analysis, Cyber-Social Systems Engineering, Statistics and Probability, Global Optimization, Intelligent Technologies, Education Systems, Blockchain Technologies. The main goal of the workshop is to introduce the research undertaken at Lithuanian and foreign universities in the fields of data science and software engineering. Annual organization of the workshop allows the fast interchanging of new ideas among the research community. Even 11 companies supported the workshop this year. This means that the topics of the workshop are actual for business, too. Topics of the workshop cover big data, bioinformatics, data science, blockchain technologies, deep learning, digital technologies, high-performance computing, visualization methods for multidimensional data, machine learning, medical informatics, ontological engineering, optimization in data science, business rules, and software engineering. Seeking to facilitate relations between science and business, a special session and panel discussion is organized this year about topical business problems that may be solved together with the research community. This book gives an overview of all presentations of DAMSS-2018.DAMSS-2018 is the jubilee 10th international workshop on data analysis methods for software systems, organized in Druskininkai, Lithuania, at the end of the year. The same place and the same time every year. Ten years passed from the first workshop. History of the workshop starts from 2009 with 16 presentations. The idea of such workshop came up at the Institute of Mathematics and Informatics. Lithuanian Academy of Sciences and the Lithuanian Computer Society supported this idea. This idea got approval both in the Lithuanian research community and abroad. The number of this year presentations is 81. The number of registered participants is 113 from 13 countries. In 2010, the Institute of Mathematics and Informatics became a member of Vilnius University, the largest university of Lithuania. In 2017, the institute changes its name into the Institute of Data Science and Digital Technologies. This name reflects recent activities of the institute. The renewed institute has eight research groups: Cognitive Computing, Image and Signal Analysis, Cyber-Social Systems Engineering, Statistics and Probability, Global Optimization, Intelligent Technologies, Education Systems, Blockchain Technologies. The main goal of the workshop is to introduce the research undertaken at Lithuanian and foreign universities in the fields of data science and software engineering. Annual organization of the workshop allows the fast interchanging of new ideas among the research community. Even 11 companies supported the workshop this year. This means that the topics of the workshop are actual for business, too. Topics of the workshop cover big data, bioinformatics, data science, blockchain technologies, deep learning, digital technologies, high-performance computing, visualization methods for multidimensional data, machine learning, medical informatics, ontological engineering, optimization in data science, business rules, and software engineering. Seeking to facilitate relations between science and business, a special session and panel discussion is organized this year about topical business problems that may be solved together with the research community. This book gives an overview of all presentations of DAMSS-2018

    Novel pattern recognition approaches for transcriptomics data analysis

    Get PDF
    We proposed a family of methods for transcriptomics and genomics data analysis based on multi-level thresholding approach, such as OMTG for sub-grid and spot detection in DNA microarrays, and OMT for detecting significant regions based on next generation sequencing data. Extensive experiments on real-life datasets and a comparison to other methods show that the proposed methods perform these tasks fully automatically and with a very high degree of accuracy. Moreover, unlike previous methods, the proposed approaches can be used in various types of transcriptome analysis problems such as microarray image gridding with different resolutions and spot sizes as well as finding the interacting regions of DNA with a protein of interest using ChIP-Seq data without any need for parameter adjustment. We also developed constrained multi-level thresholding (CMT), an algorithm used to detect enriched regions on ChIP-Seq data with the ability of targeting regions within a specific range. We show that CMT has higher accuracy in detecting enriched regions (peaks) by objectively assessing its performance relative to other previously proposed peak finders. This is shown by testing three algorithms on the well-known FoxA1 Data set, four transcription factors (with a total of six antibodies) for Drosophila melanogaster and the H3K4ac antibody dataset. Finally, we propose a tree-based approach that conducts gene selection and builds a classifier simultaneously, in order to select the minimal number of genes that would reliably predict a given breast cancer subtype. Our results support that this modified approach to gene selection yields a small subset of genes that can predict subtypes with greater than 95%overall accuracy. In addition to providing a valuable list of targets for diagnostic purposes, the gene ontologies of the selected genes suggest that these methods have isolated a number of potential genes involved in breast cancer biology, etiology and potentially novel therapeutics

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here

    Microarray image processing : a novel neural network framework

    Get PDF
    Due to the vast success of bioengineering techniques, a series of large-scale analysis tools has been developed to discover the functional organization of cells. Among them, cDNA microarray has emerged as a powerful technology that enables biologists to cDNA microarray technology has enabled biologists to study thousands of genes simultaneously within an entire organism, and thus obtain a better understanding of the gene interaction and regulation mechanisms involved. Although microarray technology has been developed so as to offer high tolerances, there exists high signal irregularity through the surface of the microarray image. The imperfection in the microarray image generation process causes noises of many types, which contaminate the resulting image. These errors and noises will propagate down through, and can significantly affect, all subsequent processing and analysis. Therefore, to realize the potential of such technology it is crucial to obtain high quality image data that would indeed reflect the underlying biology in the samples. One of the key steps in extracting information from a microarray image is segmentation: identifying which pixels within an image represent which gene. This area of spotted microarray image analysis has received relatively little attention relative to the advances in proceeding analysis stages. But, the lack of advanced image analysis, including the segmentation, results in sub-optimal data being used in all downstream analysis methods. Although there is recently much research on microarray image analysis with many methods have been proposed, some methods produce better results than others. In general, the most effective approaches require considerable run time (processing) power to process an entire image. Furthermore, there has been little progress on developing sufficiently fast yet efficient and effective algorithms the segmentation of the microarray image by using a highly sophisticated framework such as Cellular Neural Networks (CNNs). It is, therefore, the aim of this thesis to investigate and develop novel methods processing microarray images. The goal is to produce results that outperform the currently available approaches in terms of PSNR, k-means and ICC measurements.EThOS - Electronic Theses Online ServiceAleppo University, SyriaGBUnited Kingdo

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest
    corecore