213 research outputs found

    On Advanced Mobility Concepts for Intelligent Planetary Surface Exploration

    Get PDF
    Surface exploration by wheeled rovers on Earth's Moon (the two Lunokhods) and Mars (Nasa's Sojourner and the two MERs) have been followed since many years already very suc-cessfully, specifically concerning operations over long time. However, despite of this success, the explored surface area was very small, having in mind a total driving distance of about 8 km (Spirit) and 21 km (Opportunity) over 6 years of operation. Moreover, ESA will send its ExoMars rover in 2018 to Mars, and NASA its MSL rover probably this year. However, all these rovers are lacking sufficient on-board intelligence in order to overcome longer dis-tances, driving much faster and deciding autonomously on path planning for the best trajec-tory to follow. In order to increase the scientific output of a rover mission it seems very nec-essary to explore much larger surface areas reliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to develop an intelligent mo-bile wheeled rover with four or six wheels, and having specific kinematics and locomotion suspension depending on the operational terrain of the rover to operate. DLR's Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of light-weight motion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and in increasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailed modeling, optimization, and simula-tion tasks. We have developed efficient software tools to simulate the rover driveability per-formance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on inclined planes, where wheel and grouser geometry plays a dominant role. Moreover, rover optimization is performed to support the best engineering intuitions, that will optimize structural and geometric parameters, compare various kinematics suspension concepts, and make use of realistic cost functions like mass and consumed energy minimization, static sta-bility, and more. For self-localization and safe navigation through unknown terrain we make use of fast 3D stereo algorithms that were successfully used e.g. in unmanned air vehicle ap-plications and on terrestrial mobile systems. The advanced rover design approach is applica-ble for lunar as well as Martian surface exploration purposes. A first mobility concept ap-proach for a lunar vehicle will be presented

    Algorithmic approaches to high speed atomic force microscopy

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe atomic force microscope (AFM) has a unique set of capabilities for investigating biological systems, including sub-nanometer spatial resolution and the ability to image in liquid and to measure mechanical properties. Acquiring a high quality image, however, can take from minutes to hours. Despite this limited frame rate, researchers use the instrument to investigate dynamics via time-lapse imaging, driven by the need to understand biomolecular activities at the molecular level. Studies of processes such as DNA digestion with DNase, DNA-RNA polymerase binding and RNA transcription from DNA by RNA polymerase redefined the potential of AFM in biology. As a result of the need for better temporal resolution, advanced AFMs have been developed. The current state of the art in high-speed AFM (HS-AFM) for biological studies is an instrument developed by Toshio Ando at Kanazawa University in Japan. This instrument can achieve 12 frames/sec and has successfully visualized the motion of protein motors at the molecular level. This impressive instrument as well as other advanced AFMs, however, comes with tradeoffs that include a small scan size, limited imaging modes and very high cost. As a result, most AFM users still rely on standard commercial AFMs. The work in this thesis develops algorithmic approaches that can be implemented on existing instruments, from standard commercial systems to cutting edge HS-AFM units, to enhance their capabilities. There are four primary contributions in this thesis. The first is an analysis of the signals available in an AFM with respect to the information they carry and their suitability for imaging at different scan speeds. The next two are algorithmic approaches to HS-AFM that take advantage of these signals in different ways. The first algorithm involves a new sample profile estimator that yields accurate topology at speeds beyond the bandwidth of the limiting actuator. The second involves more efficient sampling, using the data in real time to steer the tip. Both algorithms yield at least an order of magnitude improvement in imaging rate but with different tradeoffs. The first operates beyond the bandwidth of the controller managing the tip-sample interaction and therefore the applied force is not well-regulated. The second keeps this control intact but is effective only on a limited set of samples, namely biopolymers or other string-like samples. Experiments on calibration samples and λ-DNA show that both of the algorithms improve the imaging rate by an order of magnitude. In the fourth contribution, extended applications of AFMs equipped with the algorithmic approaches are the tracking of a macromolecule moving along a string-like sample and a time optimal path for repetitive non-raster scans along string-like samples

    Force control of piezoelectric walker

    Get PDF
    This paper is concerned with the force control of a walking piezoelectric motor, a commercially available Piezo LEGS motor. The motor is capable of providing high precision positioning control on nanometer scale, but also relatively high forces up to 6 N. The proposed force control algorithm is very simple, but effective, and it is based on a recently presented coordinate transformation. The transformation allows definition of the driving waveforms for the motor according to a desired motion of the motor legs in the plane of motion. Such a possibility opens a path for creating the y-direction interaction force between the motor legs and the rod which is enough to ensure no relative motion between the legs and the rod. Once that is achieved, one can control the x-direction force imposed by the motor rod on its environment. The presented force control scheme has been successfully validated through a series of experiments

    3D orbital tracking microscopy: from cells to organisms

    Get PDF

    2-DOF PIEZOELECTRIC ACTUATOR CONTROLLER BASED ON FPGA

    Get PDF
    This article presents the method for controlling the piezolegs motor with the application of the FPGA (Field-programmable gate array) system and presents the results of conducted tests of the motor slider displacement, with various steering signal configurations. It includes also the review of piezoelectric motors solutions and characteristics of systems, based on FPGA systems. Suggested steering solution can be used for subsequent tests on piezolegs drives and can constitute positioning system element

    Two-photon real-time device for single-particle holographic tracking (red shot)

    Full text link
    Three-dimension real-time tracking of single emitters is an emerging tool for assessment of biological behavior as intraneuronal transport, for which spatiotemporal resolution is crucial to understand the microscopic interactions between molecular motors. We report the use of second harmonic signal from nonlinear nanoparticles to localize them in a super-localization regime, down to 15 nm precision, and at high refreshing rates, up to 1.1 kHz, allowing us to track the particles in real-time. Holograms dynamically displayed on a digital micro-mirror device are used to steer the excitation laser focus in 3D around the particle on a specific pattern. The particle position is inferred from the collected intensities using a maximum likelihood approach. The holograms are also used to compensate for optical aberrations of the optical system. We report tracking of particles moving faster than 30 ÎĽ\mum/s with an uncertainty on the localization around 40 nm. We have been able to track freely moving particles over tens of micrometers, and directional intracellular transport in neurites

    LaserCube optical communication terminal for nano and micro satellites

    Get PDF
    This paper presents the design and testing of LaserCube, a miniature optical communication terminal conceived for nano and microsatellites. The system architecture has been designed for both the downlink and intersatellite link version of the system. Then, a complete engineering model of LaserCube in its intersatellite link configuration has been developed and tested. It features (1) a dual stage pointing and tracking system based on a coarse pointing mechanism patented by Stellar Project, (2) an optical head with a full-duplex telecom channel with transmission and reception on the same wavelength for two-way links, (3) a transceiver section with telecom laser source and optical receiver and (4) the terminal control unit with onboard computer, actuator drivers and data interface. Experimental validation of the system is achieved through a laboratory simulation of an intersatellite link scenario with realistic dynamic disturbance coming from the host satellite attitude jitter

    Design and implementation of high-bandwidth, high-resolution imaging in atomic force microscopy

    Get PDF
    Video-rate imaging with subnanometer resolution without compromising on the scan range has been a long-awaited goal in Atomic Force Microscopy (AFM). The past decade saw significant advances in hardware used in atomic force microscopes, which further enable the feasibility of high-speed Atomic Force Microscopy. Control design in AFMs plays a vital role in realizing the achievable limits of the device hardware. Almost all AFMs in use today use Proportional-Integral-Derivative(PID) control designs, which can be majorly improved upon for performance and robustness. We address the problem of AFM control design through a systems approach to design model-based control laws that can give major improvements in the performance and robustness of AFM imaging. First, we propose a cascaded control design approach to tapping mode imaging, which is the most common mode of AFM imaging. The proposed approach utilizes the vertical positioning sensor in addition to the cantilever deflection sensor in the feedback loop. The control design problem is broken down into that of an inner control loop and an outer control loop. We show that by appropriate control design, unwanted effects arising out of model uncertainties and nonlinearities of the vertical positioning system are eliminated. Experimental implementation of the proposed control design shows improved imaging quality at up to 30% higher speeds. Secondly, we address a fundamental limitation in tapping mode imaging by proposing a novel transform-based imaging mode to achieve an order of magnitude improvement in AFM imaging bandwidth. We introduce a real-time transform that effects a frequency shift of a given signal. We combine model-based reference generation along with the real-time transform. The proposed method is shown to have linear dynamical characteristics, making it conducive for model-based control designs, thus paving the way for achieving superior performance and robustness in imaging

    Software framework for high precision motion control applications

    Get PDF
    Developing a motion control system requires much effort in different domains. Namely control, electronics and software engineering. In addition to these, there are the system requirements which may be completely different to these spanning from biomedical engineering to psychology. Collaboration between these fields is vital, however these fields should be involved only as much as they are needed to be in the fields of expertise of the others. Several software frameworks exist for the creation of robotics applications. But currently there is no standard for the creation of mechatronics systems nor is there a complete software package that can deal with all aspects in the programming of such systems. Existing frameworks each have their advantages and disadvantages, however they generally have limited or no dedicated structure for the development of the motion control aspect of the problem and deal extensively with the robotenvironment interactions and inter mechanism communications. Dealing with the higher levels of the problem, they are usually not well suited for hard realtime; since the interactions can run on soft realtime constraints. The software framework proposed in this study aims to achieve a level of abstraction between the different domains utilized within a system. The aim in using the framework is to achieve a sustainable software structure for the system. Sustainability is an important part of systems, as it permits a system to evolve with changing requirements and variable hardware, with the ultimate goal of having robust software that can be utilized on different platforms and with other systems using an abstraction layer between the hardware and the software. This ensures that the system can be migrated from a processing platform to any other platform and also from one set of hardware to another. The framework was tested on several systems that have precision motion control requirements such as a 10 degree of freedom micro assembly workstation, a modular micro factory and a haptic system with time delay. Each of the systems works in di erent processing platforms and have different motion control requirements. The achieved results from the implementations show that the software framework is an important tool for the development of motion control software
    • …
    corecore