641 research outputs found

    SPARC: Statistical Performance Analysis With Relevance Conclusions

    Get PDF
    The performance of one computer relative to another is traditionally characterized through benchmarking, a practice occasionally deficient in statistical rigor. The performance is often trivialized through simplified measures, such as the approach of central tendency, but doing so risks a loss of perspective of the variability and non-determinism of modern computer systems. Authentic performance evaluations are derived from statistical methods that accurately interpret and assess data. Methods that currently exist within performance comparison frameworks are limited in efficacy, statistical inference is either overtly simplified or altogether avoided. A prevalent criticism from computer performance literature suggests that the results from difference hypothesis testing lack substance. To address this problem, we propose a new framework, SPARC, that pioneers a synthesis of difference and equivalence hypothesis testing to provide relevant conclusions. It is a union of three key components: (i) identifying either superiority or similarity through difference and equivalence hypotheses (ii) scalable methodology (based on the number of benchmarks), and (iii) a conditional feedback loop from test outcomes that produces informative conclusions of relevance, equivalence, trivial, or indeterminant. We present an experimental analysis characterizing the performance of a trio of RISC-V open-source processors to evaluate SPARC and its efficacy compared to similar frameworks

    Parallelizing Epistasis Detection in GWAS on FPGA and GPU-Accelerated Computing Systems

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in IEEE - ACM Transactions on Computational Biology and Bioinformatics. The final authenticated version is available online at: http://dx.doi.org/10.1109/TCBB.2015.2389958[Abstract] High-throughput genotyping technologies (such as SNP-arrays) allow the rapid collection of up to a few million genetic markers of an individual. Detecting epistasis (based on 2-SNP interactions) in Genome-Wide Association Studies is an important but time consuming operation since statistical computations have to be performed for each pair of measured markers. Computational methods to detect epistasis therefore suffer from prohibitively long runtimes; e.g., processing a moderately-sized dataset consisting of about 500,000 SNPs and 5,000 samples requires several days using state-of-the-art tools on a standard 3 GHz CPU. In this paper, we demonstrate how this task can be accelerated using a combination of fine-grained and coarse-grained parallelism on two different computing systems. The first architecture is based on reconfigurable hardware (FPGAs) while the second architecture uses multiple GPUs connected to the same host. We show that both systems can achieve speedups of around four orders-of-magnitude compared to the sequential implementation. This significantly reduces the runtimes for detecting epistasis to only a few minutes for moderatelysized datasets and to a few hours for large-scale datasets.London. Wellcome Trust; 076113London. Wellcome Trust; 08547

    Automated Dynamic Error Analysis Methods for Optimization of Computer Arithmetic Systems

    Get PDF
    Computer arithmetic is one of the more important topics within computer science and engineering. The earliest implementations of computer systems were designed to perform arithmetic operations and cost if not all digital systems will be required to perform some sort of arithmetic as part of their normal operations. This reliance on the arithmetic operations of computers means the accurate representation of real numbers within digital systems is vital, and an understanding of how these systems are implemented and their possible drawbacks is essential in order to design and implement modern high performance systems. At present the most widely implemented system for computer arithmetic is the IEEE754 Floating Point system, while this system is deemed to the be the best available implementation it has several features that can result in serious errors of computation if not implemented correctly. Lack of understanding of these errors and their effects has led to real world disasters in the past on several occasions. Systems for the detection of these errors are highly important and fast, efficient and easy to use implementations of these detection systems is a high priority. Detection of floating point rounding errors normally requires run-time analysis in order to be effective. Several systems have been proposed for the analysis of floating point arithmetic including Interval Arithmetic, Affine Arithmetic and Monte Carlo Arithmetic. While these systems have been well studied using theoretical and software based approaches, implementation of systems that can be applied to real world situations has been limited due to issues with implementation, performance and scalability. The majority of implementations have been software based and have not taken advantage of the performance gains associated with hardware accelerated computer arithmetic systems. This is especially problematic when it is considered that systems requiring high accuracy will often require high performance. The aim of this thesis and associated research is to increase understanding of error and error analysis methods through the development of easy to use and easy to understand implementations of these techniques

    Automated Dynamic Error Analysis Methods for Optimization of Computer Arithmetic Systems

    Get PDF
    Computer arithmetic is one of the more important topics within computer science and engineering. The earliest implementations of computer systems were designed to perform arithmetic operations and cost if not all digital systems will be required to perform some sort of arithmetic as part of their normal operations. This reliance on the arithmetic operations of computers means the accurate representation of real numbers within digital systems is vital, and an understanding of how these systems are implemented and their possible drawbacks is essential in order to design and implement modern high performance systems. At present the most widely implemented system for computer arithmetic is the IEEE754 Floating Point system, while this system is deemed to the be the best available implementation it has several features that can result in serious errors of computation if not implemented correctly. Lack of understanding of these errors and their effects has led to real world disasters in the past on several occasions. Systems for the detection of these errors are highly important and fast, efficient and easy to use implementations of these detection systems is a high priority. Detection of floating point rounding errors normally requires run-time analysis in order to be effective. Several systems have been proposed for the analysis of floating point arithmetic including Interval Arithmetic, Affine Arithmetic and Monte Carlo Arithmetic. While these systems have been well studied using theoretical and software based approaches, implementation of systems that can be applied to real world situations has been limited due to issues with implementation, performance and scalability. The majority of implementations have been software based and have not taken advantage of the performance gains associated with hardware accelerated computer arithmetic systems. This is especially problematic when it is considered that systems requiring high accuracy will often require high performance. The aim of this thesis and associated research is to increase understanding of error and error analysis methods through the development of easy to use and easy to understand implementations of these techniques

    FPGAs in Bioinformatics: Implementation and Evaluation of Common Bioinformatics Algorithms in Reconfigurable Logic

    Get PDF
    Life. Much effort is taken to grant humanity a little insight in this fascinating and complex but fundamental topic. In order to understand the relations and to derive consequences humans have begun to sequence their genomes, i.e. to determine their DNA sequences to infer information, e.g. related to genetic diseases. The process of DNA sequencing as well as subsequent analysis presents a computational challenge for recent computing systems due to the large amounts of data alone. Runtimes of more than one day for analysis of simple datasets are common, even if the process is already run on a CPU cluster. This thesis shows how this general problem in the area of bioinformatics can be tackled with reconfigurable hardware, especially FPGAs. Three compute intensive problems are highlighted: sequence alignment, SNP interaction analysis and genotype imputation. In the area of sequence alignment the software BLASTp for protein database searches is exemplarily presented, implemented and evaluated.SNP interaction analysis is presented with three applications performing an exhaustive search for interactions including the corresponding statistical tests: BOOST, iLOCi and the mutual information measurement. All applications are implemented in FPGA-hardware and evaluated, resulting in an impressive speedup of more than in three orders of magnitude when compared to standard computers. The last topic of genotype imputation presents a two-step process composed of the phasing step and the actual imputation step. The focus lies on the phasing step which is targeted by the SHAPEIT2 application. SHAPEIT2 is discussed with its underlying mathematical methods in detail, and finally implemented and evaluated. A remarkable speedup of 46 is reached here as well

    Autonomous Recovery Of Reconfigurable Logic Devices Using Priority Escalation Of Slack

    Get PDF
    Field Programmable Gate Array (FPGA) devices offer a suitable platform for survivable hardware architectures in mission-critical systems. In this dissertation, active dynamic redundancy-based fault-handling techniques are proposed which exploit the dynamic partial reconfiguration capability of SRAM-based FPGAs. Self-adaptation is realized by employing reconfiguration in detection, diagnosis, and recovery phases. To extend these concepts to semiconductor aging and process variation in the deep submicron era, resilient adaptable processing systems are sought to maintain quality and throughput requirements despite the vulnerabilities of the underlying computational devices. A new approach to autonomous fault-handling which addresses these goals is developed using only a uniplex hardware arrangement. It operates by observing a health metric to achieve Fault Demotion using Recon- figurable Slack (FaDReS). Here an autonomous fault isolation scheme is employed which neither requires test vectors nor suspends the computational throughput, but instead observes the value of a health metric based on runtime input. The deterministic flow of the fault isolation scheme guarantees success in a bounded number of reconfigurations of the FPGA fabric. FaDReS is then extended to the Priority Using Resource Escalation (PURE) online redundancy scheme which considers fault-isolation latency and throughput trade-offs under a dynamic spare arrangement. While deep-submicron designs introduce new challenges, use of adaptive techniques are seen to provide several promising avenues for improving resilience. The scheme developed is demonstrated by hardware design of various signal processing circuits and their implementation on a Xilinx Virtex-4 FPGA device. These include a Discrete Cosine Transform (DCT) core, Motion Estimation (ME) engine, Finite Impulse Response (FIR) Filter, Support Vector Machine (SVM), and Advanced Encryption Standard (AES) blocks in addition to MCNC benchmark circuits. A iii significant reduction in power consumption is achieved ranging from 83% for low motion-activity scenes to 12.5% for high motion activity video scenes in a novel ME engine configuration. For a typical benchmark video sequence, PURE is shown to maintain a PSNR baseline near 32dB. The diagnosability, reconfiguration latency, and resource overhead of each approach is analyzed. Compared to previous alternatives, PURE maintains a PSNR within a difference of 4.02dB to 6.67dB from the fault-free baseline by escalating healthy resources to higher-priority signal processing functions. The results indicate the benefits of priority-aware resiliency over conventional redundancy approaches in terms of fault-recovery, power consumption, and resource-area requirements. Together, these provide a broad range of strategies to achieve autonomous recovery of reconfigurable logic devices under a variety of constraints, operating conditions, and optimization criteria

    Multi-label learning based semi-global matching forest

    Get PDF
    Semi-Global Matching (SGM) approximates a 2D Markov Random Field (MRF) via multiple 1D scanline optimizations, which serves as a good trade-off between accuracy and efficiency in dense matching. Nevertheless, the performance is limited due to the simple summation of the aggregated costs from all 1D scanline optimizations for the final disparity estimation. SGM-Forest improves the performance of SGM by training a random forest to predict the best scanline according to each scanline’s disparity proposal. The disparity estimated by the best scanline acts as reference to adaptively adopt close proposals for further post-processing. However, in many cases more than one scanline is capable of providing a good prediction. Training the random forest with only one scanline labeled may limit or even confuse the learning procedure when other scanlines can offer similar contributions. In this paper, we propose a multi-label classification strategy to further improve SGM-Forest. Each training sample is allowed to be described by multiple labels (or zero label) if more than one (or none) scanline gives a proper prediction. We test the proposed method on stereo matching datasets, from Middlebury, ETH3D, EuroSDR image matching benchmark, and the 2019 IEEE GRSS data fusion contest. The result indicates that under the framework of SGM-Forest, the multi-label strategy outperforms the single-label scheme consistently
    • …
    corecore