3 research outputs found

    SoC-based FPGA architecture for image analysis and other highly demanding applications

    Get PDF
    Al giorno d'oggi, lo sviluppo di algoritmi si concentra su calcoli efficienti in termini di prestazioni ed efficienza energetica. Tecnologie come il field programmable gate array (FPGA) e il system on chip (SoC) basato su FPGA (FPGA/SoC) hanno dimostrato la loro capacità di accelerare applicazioni di calcolo intensive risparmiando al contempo il consumo energetico, grazie alla loro capacità di elevato parallelismo e riconfigurazione dell'architettura. Attualmente, i cicli di progettazione esistenti per FPGA/SoC sono lunghi, a causa della complessità dell'architettura. Pertanto, per colmare il divario tra le applicazioni e le architetture FPGA/SoC e ottenere un design hardware efficiente per l'analisi delle immagini e altri applicazioni altamente demandanti utilizzando lo strumento di sintesi di alto livello, vengono prese in considerazione due strategie complementari: tecniche ad hoc e stima delle prestazioni. Per quanto riguarda le tecniche ad-hoc, tre applicazioni molto impegnative sono state accelerate attraverso gli strumenti HLS: discriminatore di forme di impulso per i raggi cosmici, classificazione automatica degli insetti e re-ranking per il recupero delle informazioni, sottolineando i vantaggi quando questo tipo di applicazioni viene attraversato da tecniche di compressione durante il targeting dispositivi FPGA/SoC. Inoltre, in questa tesi viene proposto uno stimatore delle prestazioni per l'accelerazione hardware per prevedere efficacemente l'utilizzo delle risorse e la latenza per FPGA/SoC, costruendo un ponte tra l'applicazione e i domini architetturali. Lo strumento integra modelli analitici per la previsione delle prestazioni e un motore design space explorer (DSE) per fornire approfondimenti di alto livello agli sviluppatori di hardware, composto da due motori indipendenti: DSE basato sull'ottimizzazione a singolo obiettivo e DSE basato sull'ottimizzazione evolutiva multiobiettivo.Nowadays, the development of algorithms focuses on performance-efficient and energy-efficient computations. Technologies such as field programmable gate array (FPGA) and system on chip (SoC) based on FPGA (FPGA/SoC) have shown their ability to accelerate intensive computing applications while saving power consumption, owing to their capability of high parallelism and reconfiguration of the architecture. Currently, the existing design cycles for FPGA/SoC are time-consuming, owing to the complexity of the architecture. Therefore, to address the gap between applications and FPGA/SoC architectures and to obtain an efficient hardware design for image analysis and highly demanding applications using the high-level synthesis tool, two complementary strategies are considered: ad-hoc techniques and performance estimator. Regarding ad-hoc techniques, three highly demanding applications were accelerated through HLS tools: pulse shape discriminator for cosmic rays, automatic pest classification, and re-ranking for information retrieval, emphasizing the benefits when this type of applications are traversed by compression techniques when targeting FPGA/SoC devices. Furthermore, a comprehensive performance estimator for hardware acceleration is proposed in this thesis to effectively predict the resource utilization and latency for FPGA/SoC, building a bridge between the application and architectural domains. The tool integrates analytical models for performance prediction, and a design space explorer (DSE) engine for providing high-level insights to hardware developers, composed of two independent sub-engines: DSE based on single-objective optimization and DSE based on evolutionary multi-objective optimization

    Build framework and runtime abstraction for partial reconfiguration on FPGA SoCs

    Get PDF
    Growth in edge computing has increased the requirement for edge systems to process larger volumes of real-time data, such as with image processing and machine learning; which are increasingly demanding of computing resources. Offloading tasks to the cloud provides some relief but is network dependant, high latency and expensive. Alternative architectures such as GPUs provide higher performance acceleration for this type of data processing but trade processing performance for an increase in power consumption. Another option is the Field Programmable Gate Array; a flexible matrix of logic that can be configured by a designer to provide a highly optimised computation path for incoming data. There are drawbacks; the FPGA design process is complex, the domain is dissimilar to software and the tools require bespoke expertise. A designer must manage the hardware to software paradigm introduced when tightly-coupled with general purpose processor. Advanced features, such as the ability to partially reconfigure (PR) specific regions of the FPGA, further increase this complexity. This thesis presents theory and demonstration of custom frameworks and tools for increasing abstraction and simplifying control over PR applications. We present mechanisms for networked PR; a mechanism for bypassing the traditional software networking stack to trigger PR with reduced latency and increased determinism. We developed a build framework for automating the end-to-end PR design process for Linux based systems as well as an abstracted runtime for managing the resulting applications. Finally, we take expand on this work and present a high level abstraction for PR on cyber physical systems, with a demonstration using the Robot Operating System. This work is released as open source contributions, designed to enable future PR research

    Interferometric Imaging of Lightning Initiation through LOFAR: Uncovering the Spontaneous and Not-So-Spontaneous Nature of Lightning Initiation in 3D

    Get PDF
    With recent advances in instrumentation and the continued development and refinement of analytical methods, the hindrances that previously existed in uncovering the physical processes governing the behavior of lightning are diminishing. The focus of this dissertation research, interferometric imaging of lightning initiation through beamforming via the Low Frequency Array (LOFAR), will describe in detail how both the instrumentation and methods cooperate to enable the detection of lightning processes in which are below the level of the galactic and thermal very high frequency (VHF) background on individual antennas within the array. These conditions have proven to be integral in uncovering of two novel methods of lightning initiation. For one event, a broad discharge is observed propagate with a velocity of 4.8 +/- 0.1 x 10^6 m/s while increasing in intensity from below the LOFAR noise level. For the second mode of initiation, a negative discharge was observed to propagate with a velocity of 1.5 x 10^3 m/s, which is three orders of magnitude slower than normal negative leaders. The first shares features with previously conceptualized ideas of how lightning initiates. This is supported by other researchers, but the findings have unique features that are not explained by the current theories how lightning initiates. Furthermore, the second initiation method is new and unlike any other known lightning process. Lastly, it should be noted that the results we present these use true 3D interferometric imaging techniques. Without the development and implementation of these methods the results reported within this work would not be possible. This thesis will briefly discuss the current understanding of lightning and related phenomena to give an overview the topic and context for why the study of lightning is important. This will the be followed by current theories of how lightning initiates, and then by discussion of the development of the 3D interferometric techniques and their implementation. Next, the thesis will present two recently observed processes by which lightning leaders form, after which is a discussion of the implications of these findings and how they are distinct from known lightning processes. Additionally, we will discuss results from the possible detection of gamma ray glows from the thunderstorm balloon campaign. These findings are the result of the updated methodology and instrumentation when this project was transferred to the University of New Hampshire from the Florida Institute of Technology. Lastly, the thesis concludes with a review of the implications of these discoveries and a discussion of future investigations, as well as, propose methods to further uncover additional details of the physical processes behind lightning initiation and where the results of the observations reported in this thesis fit within the current understanding of how lightning initiates
    corecore