422 research outputs found

    Automatic transmit power control for power efficient communications in UAS

    Get PDF
    Nowadays, unmanned aerial vehicles (UAV) have become one of the most popular tools that can be used in commercial, scientific, agricultural and military applications. As drones become faster, smaller and cheaper, with the ability to add payloads, the usage of the drone can be versatile. In most of the cases, unmanned aerials systems (UAS) are equipped with a wireless communication system to establish a link with the ground control station to transfer the control commands, video stream, and payload data. However, with the limited onboard calculation resources in the UAS, and the growing size and volume of the payload data, computational complex signal processing such as deep learning cannot be easily done on the drone. Hence, in many drone applications, the UAS is just a tool for capturing and storing data, and then the data is post-processed off-line in a more powerful computing device. The other solution is to stream payload data to the ground control station (GCS) and let the powerful computer on the ground station to handle these data in real-time. With the development of communication techniques such as orthogonal frequency-division multiplexing (OFDM) and multiple-input multiple-output (MIMO) transmissions, it is possible to increase the spectral efficiency over large bandwidths and consequently achieve high transmission rates. However, the drone and the communication system are usually being designed separately, which means that regardless of the situation of the drone, the communication system is working independently to provide the data link. Consequently, by taking into account the position of the drone, the communication system has some room to optimize the link budget efficiency. In this master thesis, a power-efficient wireless communication downlink for UAS has been designed. It is achieved by developing an automatic transmit power control system and a custom OFDM communication system. The work has been divided into three parts: research of the drone communication system, an optimized communication system design and finally, FPGA implementation. In the first part, an overview on commercial drone communication schemes is presented and discussed. The advantages and disadvantages shown are the source of inspiration for improvement. With these ideas, an optimized scheme is presented. In the second part, an automatic transmit power control system for UAV wireless communication and a power-efficient OFDM downlink scheme are proposed. The automatic transmit power control system can estimate the required power level by the relative position between the drone and the GCS and then inform the system to adjust the power amplifier (PA) gain and power supply settings. To obtain high power efficiency for different output power levels, a searching strategy has been applied to the PA testbed to find out the best voltage supply and gain configurations. Besides, the OFDM signal generation developed in Python can encode data bytes to the baseband signal for testing purpose. Digital predistortion (DPD) linearization has been included in the transmitter’s design to guarantee the signal linearity. In the third part, two core algorithms: IFFT and LUT-based DPD, have been implemented in the FPGA platform to meet the real-time and high-speed I/O requirements. By using the high-level synthesis design process provided by Xilinx Corp, the algorithms are implemented as reusable IP blocks. The conclusion of the project is given in the end, including the summary of the proposed drone communication system and envisioning possible future lines of research

    Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments

    Full text link
    Inter satellite laser interferometry is a central component of future space-borne gravity instruments like LISA, eLISA, NGO and future geodesy missions. The inherently small laser wavelength allows to measure distance variations with extremely high precision by interfering a reference beam with a measurement beam. The readout of such interferometers is often based on tracking phasemeters, able to measure the phase of an incoming beatnote with high precision over a wide range of frequencies. The implementation of such phasemeters is based on all digital phase-locked loops, hosted in FPGAs. Here we present a precise model of an all digital phase locked loop that allows to design such a readout algorithm and we support our analysis by numerical performance measurements and experiments with analog signals.Comment: 17 pages, 6 figures, accepted for publication in CQ

    Programmable Logic Devices in Experimental Quantum Optics

    Get PDF
    We discuss the unique capabilities of programmable logic devices (PLD's) for experimental quantum optics and describe basic procedures of design and implementation. Examples of advanced applications include optical metrology and feedback control of quantum dynamical systems. As a tutorial illustration of the PLD implementation process, a field programmable gate array (FPGA) controller is used to stabilize the output of a Fabry-Perot cavity

    Direct Digital Frequency Synthesizer Architecture for Wireless Communication in 90 NM CMOS Technology

    Get PDF
    Software radio is one promising field that can meet the demands for low cost, low power, and high speed electronic devices for wireless communication. At the heart of software radio is a programmable oscillator called a Direct Digital Synthesizer (DDS). DDS has the capabilities of rapid frequency hopping by digital software control while operating at very high frequencies and having sub-hertz resolution. Nevertheless, the digital-to-analog converter (DAC) and the read-only-memory (ROM) look-up table, building blocks of the DDS, prevent the DDS to be used in wireless communication because they introduce errors and noises to the DDS and their performances deteriorate at high speed. The DAC and ROM are replaced in this thesis by analog active filters that convert the square wave output of the phase accumulator directly into a sine wave. The proposed architecture operates with a reference clock of 9.09 GHz and can be fully-integrated in 90 nm CMOS technology

    Online Timing Slack Measurement and its Application in Field-Programmable Gate Arrays

    Get PDF
    Reliability, power consumption and timing performance are key concerns for today's integrated circuits. Measurement techniques capable of quantifying the timing characteristics of a circuit, while it is operating, facilitate a range of benefits. Delay variation due to environmental and operational conditions, and degradation can be monitored by tracking changes in timing performance. Using the measurements in a closed-loop to control power supply voltage or clock frequency allows for the reduction of timing safety margins, leading to improvements in power consumption or throughput performance through the exploitation of better-than worst-case operation. This thesis describes a novel online timing slack measurement method which can directly measure the timing performance of a circuit, accurately and with minimal overhead. Enhancements allow for the improvement of absolute accuracy and resolution. A compilation flow is reported that can automatically instrument arbitrary circuits on FPGAs with the measurement circuitry. On its own this measurement method is able to track the "health" of an integrated circuit, from commissioning through its lifetime, warning of impending failure or instigating pre-emptive degradation mitigation techniques. The use of the measurement method in a closed-loop dynamic voltage and frequency scaling scheme has been demonstrated, achieving significant improvements in power consumption and throughput performance.Open Acces

    Direct Digital Synthesis: A Flexible Architecture for Advanced Signals Research for Future Satellite Navigation Payloads

    Get PDF
    In legacy Global Positioning System (GPS) Satellite Navigation (SatNav) payloads, the architecture does not provide the flexibility to adapt to changing circumstances and environments. GPS SatNav payloads have largely remained unchanged since the system became fully operational in April 1995. Since then, the use of GPS has become ubiquitous in our day-to-day lives. GPS availability is now a basic assumption for distributed infrastructure; it has become inextricably tied to our national power grids, cellular networks, and global financial systems. Emerging advancements of easy to use radio technologies, such as software-defined radios (SDRs), have greatly lowered the difficulty of discovery and exploitation of vulnerabilities to these systems. The promise of a Direct Digital Synthesis (DDS) architecture provides the flexibility of incorporating countermeasures to emerging threats while maintaining backward capability with existing GPS signals. The objective of the proposed research is to determine if DDS architecture is a viable replacement for legacy GPS SatNav payloads. The overall performance of several architectures is analyzed and evaluated. The architecture with the best performance is chosen and implemented onto a programmable logic device, and GPS signals are generated. The advantages and disadvantages of using the DDS model are discussed and an end-to-end numerical and mathematical models are developed. The end-to-end mathematical model analyzes the quantization effects of the DDS architecture, and it predicts the location and power levels of the desired signal and spurious content present in the spectrum. The spurious content may potentially cause intermodulation distortion to the desired signal. The appropriate DDS architecture and resources are selected by the information gained from the mathematical model

    Design of Voice-Controlled Intelligent Robot

    Get PDF
    This project aims at developing a robot on a field programmable gate array, which can perform tasks by taking the user’s voice commands. The robot has two wheels for locomotion and IR sensors. It can also autonomously direct itself according to the obstacles coming in its path with the help of IR sensors. The objective is to make the robot to recognize a limited set of commands for giving directions (typically 4), and move accordingly. Mel-frequency cepstral coefficients are used as the features that represent the input voice-commands and dynamic time warping algorithm is implemented for the recognition of the commands. The entire voice-command recognition module has both hardware and software components. The software runs on MicroBlaze, a 32-bit soft-core processor from Xilinx. A hardware-software co-design of a voice-command feature extraction circuit is implemented and validated on Spartan-6 FPGA. It is also compared against a complete softwarebased implementation and a complete hardware-based design

    FPGA based Uniform Channelizer Implementation

    Get PDF
    Channelizers are widely used in modern digital communication systems. Advanced uniform multirate channelization have been theoretically proved to be capable of reducing the computational load, with a better performance. Therefore, in this thesis, we implement these designs on a FPGA board for the sake of the comprehensive evaluation of resource usage, performance and frequency response. The uniform filter-banks are one of the most essential unit in channelization. The Generalised Discrete Fourier Transform Modulated Filter Bank (GDFT-FB), as an important variant of basic a DFT-FB, has been implemented in FPGA and demonstrated with a better computational saving rather than traditional schemes. Moreover the oversampling version is demonstrated to have a better frequency response with an acceptable amount of extra resources. On the other hand, frequency response masking (FRM) techniques is able to reduce the number of coefficients. Therefore, the full FRM GDFT-FB and alternative narrowband FRM GDFT-FB are both implemented in FPGA platform, in order to achieve a better performance and hardware efficiency
    corecore