116 research outputs found

    Implementation of a wireless underwater video link

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 73-75).Autonomous underwater vehicles (AUVs) are increasingly being considered for remotely supervised missions, primarily for routine subsea inspection tasks currently performed by tethered remotely operated vehicles (ROVs). This project is a step in the development of a high speed, networked wireless communication capability for AUVs using MIT Sea Grant's software defined Reconfigurable Modem (R-Modem) acoustic communications platform. We have demonstrated a test implementation of live streaming video with a digital camera connected to an R-Modem transceiver; and explored a range of tuning parameters for the video link.by James Paul Morash.M.Eng

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings

    Design of online classifier for surface defect detection and classification of cold rolled steel coil

    Get PDF
    The target to be achieved through this project was primarily aimed at detecting the surface defects belonging to different classes in cold rolled steel coils. This was achieved through grabbing the images from the camera, here line scan camera is used which grabs 20 frames per second. Carrying out defect detection on these images and later classifying them. We present a method to automatically detect and localize defects occurring on the surface. Defect regions are segmented from background images using their distinguishing texture characteristics. This method locates candidate defect regions directly in the DCT (Discrete cosine transform) domain using the intensity variation information encoded in the DCT coefficients. More precisely, defect detection employs DCT analysis of each individual non-overlapping region of the image to determine potentially defective blocks, which are further grown and merged to form a defect region on the image. In this thesis a computer vision based, a framework for steel surface defects detection and classification of cold rolled steel strips is implemented. We have designed online classifier for automatic defect detection and classification of defects. In this we measured statistical textural features using gray level co-occurrence matrix presented by Haralick and geometrical features are also calculated. The final decision SVM (Support Vector Machine) handles the problem of classification of the defect types. We also proposed SVM voting strategy for the final decision that handles the problem of multiple outputs of a given input image with a specific defect type. In addition, this approach improves the classification performance. Experimental results demonstrate the effectiveness of the proposed method on steel surface defects detection and classification. In addition, the defect information is encoded in the image. An image viewer application is designed for decoding the defect information

    Low delay video coding

    Get PDF
    Analogue wireless cameras have been employed for decades, however they have not become an universal solution due to their difficulties of set up and use. The main problem is the link robustness which mainly depends on the requirement of a line-of-sight view between transmitter and receiver, a working condition not always possible. Despite the use of tracking antenna system such as the Portable Intelligent Tracking Antenna (PITA [1]), if strong multipath fading occurs (e.g. obstacles between transmitter and receiver) the picture rapidly falls apart. Digital wireless cameras based on Orthogonal Frequency Division Multiplexing (OFDM) modulation schemes give a valid solution for the above problem. OFDM offers strong multipath protection due to the insertion of the guard interval; in particular, the OFDM-based DVB-T standard has proven to offer excellent performance for the broadcasting of multimedia streams with bit rates over 10 Mbps in difficult terrestrial propagation channels, for fixed and portable applications. However, in typical conditions, the latency needed to compress/decompress a digital video signal at Standard Definition (SD) resolution is of the order of 15 frames, which corresponds to ≃ 0.5 sec. This delay introduces a serious problem when wireless and wired cameras have to be interfaced. Cabled cameras do not use compression, because the cable which directly links transmitter and receiver does not impose restrictive bandwidth constraints. Therefore, the only latency that affects a cable cameras link system is the on cable propagation delay, almost not significant, when switching between wired and wireless cameras, the residual latency makes it impossible to achieve the audio-video synchronization, with consequent disagreeable effects. A way to solve this problem is to provide a low delay digital processing scheme based on a video coding algorithm which avoids massive intermediate data storage. The analysis of the last MPEG based coding standards puts in evidence a series of problems which limits the real performance of a low delay MPEG coding system. The first effort of this work is to study the MPEG standard to understand its limit from both the coding delay and implementation complexity points of views. This thesis also investigates an alternative solution based on HERMES codec, a proprietary algorithm which is described implemented and evaluated. HERMES achieves better results than MPEG in terms of latency and implementation complexity, at the price of higher compression ratios, which means high output bit rates. The use of HERMES codec together with an enhanced OFDM system [2] leads to a competitive solution for wireless digital professional video applications

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Model-Based Control Techniques for Automotive Applications

    Get PDF
    Two different topics are covered in the thesis. Model Predictive Control applied to the Motion Cueing Problem In the last years the interest about dynamic driving simulators is increasing and new commercial solutions are arising. Driving simulators play an important role in the development of new vehicles and advanced driver assistance devices: in fact, on the one hand, having a human driver on a driving simulator allows automotive manufacturers to bridge the gap between virtual prototyping and on-road testing during the vehicle development phase; on the other hand, novel driver assistance systems (such as advanced accident avoidance systems) can be safely tested by having the driver operating the vehicle in a virtual, highly realistic environment, while being exposed to hazardous situations. In both applications, it is crucial to faithfully reproduce in the simulator the driver's perception of forces acting on the vehicle and its acceleration. This has to be achieved while keeping the platform within its limited operation space. Such strategies go under the name of Motion Cueing Algorithms. In this work, a particular implementation of a Motion Cueing algorithm is described, that is based on Model Predictive Control technique. A distinctive feature of such approach is that it exploits a detailed model of the human vestibular system, and consequently differs from standard Motion Cueing strategies based on Washout Filters: such feature allows for better implementation of tilt coordination and more efficient handling of the platform limits. The algorithm has been evaluated in practice on a small-size, innovative platform, by performing tests with professional drivers. Results show that the MPC-based motion cueing algorithm allows to effectively handle the platform working area, to limit the presence of those platform movements that are typically associated with driver motion sickness, and to devise simple and intuitive tuning procedures. Moreover, the availability of an effective virtual driver allows the development of effective predictive strategies, and first simulation results are reported in the thesis. Control Techniques for a Hybrid Sport Motorcycle Reduction of the environmental impact of transportation systems is a world wide priority. Hybrid propulsion vehicles have proved to have a strong potential to this regard, and different four-wheels solutions have spread out in the market. Differently from cars, and even if they are considered the ideal solution for urban mobility, motorbikes and mopeds have not seen a wide application of hybrid propulsion yet, mostly due to the more strict constraints on available space and driving feeling. In the thesis, the problem of providing a commercial 125cc motorbike with a hybrid propulsion system is considered, by adding an electric engine to its standard internal combustion engine. The aim for the prototype is to use the electrical machine (directly keyed on the drive shaft) to obtain a torque boost during accelerations, improving and regularizing the supplied power while reducing the emissions. Two different control algorithms are proposed 1) the first is based on a standard heuristic with adaptive features, simpler to implement on the ECU for the prototype; 2) the second is a torque-split optimal-control strategy, managing the different contributions from the two engines. A crucial point is the implementation of a Simulink virtual environment, realized starting from a commercial tool, VI-BikeRealTime, to test the algorithms. The hybrid engine model has been implemented in the tool from scratch, as well as a simple battery model, derived directly from data-sheet characteristics by using polynomial interpolation. The simulation system is completed by a virtual rider and a tool for build test circuits. Results of the simulations on a realistic track are included, to evaluate the different performance of the two strategies in a closed loop environment (thanks to the virtual rider). The results from on-track tests of the real prototype, using the first control strategy, are reported too

    Instrumentation of the da Vinci Robotic Surgical System

    Get PDF
    corecore