44 research outputs found

    European Reference Network for Critical Infrastructure Protection: - Novel Detection Technologies for Nuclear Security

    Get PDF
    Radiation detectors are used in nuclear security to detect nuclear and other radioactive materials out of regulatory control. In nuclear security, both the operational environment and detector technologies are constantly evolving. This document provides an overview on recent development on radiation detection technologies that are likely to have an impact on nuclear security in the near future. The four main topics covered are: detectors for gamma-ray spectrometry, neutron detectors, data acquisition and source localisation. This document will be published together with another report that concentrates on the impact of novel detection technologies from operational point of view. Therefore, the focus of this document is on technical aspects of the technologies.JRC.E.2-Technology Innovation in Securit

    IMPROVED SPATIAL RESOLUTION FOR DOUBLE-SIDED STRIP DETECTORS USING LITHIUM INDIUM DISELENIDE SEMICONDUCTORS

    Get PDF
    This research focuses on the evaluation of lithium indium diselenide (LISe) semiconductors in double-sided strip detector (DSSDs) designs as an example for the potential to achieve unparalleled neutron detection efficiency, spatial resolution, and timing resolution detection. LISe semiconductors offer high neutron detection efficiency due to the ~25% atomic ratio of Lithium-6, maximizing its efficiency of ~75% with 1 mm thickness at 2.8 angstroms. Furthermore, the 4.78 MeV -value enables high intrinsic gamma discrimination in a pixelated design (electron range). These characteristics make LISe an alternative option for neutron radiography, energy-resolved imaging, and other neutron interrogation techniques. This dissertation summarizes my current efforts to enhance LISe-based neutron imaging systems to achieve an end goal of sub-5 μm spatial resolution and sub-1 μs timing resolution. My research focuses on using MATLAB and Silvaco to simulate the expected response of a LISe DSSD. These various datasets are then trained to Machine Learning models in order to predict the neutron interaction location based upon the induced signal across multiple strip electrodes. In addition, various DSSD designs were simulated to determine the strip electrode width/pitch that optimizes the tradeoff between signal integrity and reconstruction of the neutron absorption location. The addition of electronic and statistical noise to the signal as well as varying the charge collection efficiency was also explored. The improvement upon current neutron imaging systems has the opportunity to open new avenues of research that are not possible today

    Dual beam swept source optical coherence tomography for microfluidic velocity measurements

    Get PDF
    Microfluidic flows are an increasing area of interest used for “lab-on-a-chip” bioanalytical techniques, drug discovery, and chemical processing. This requires optical, non-invasive flow-visualization techniques for characterising microfluidic flows. Optical Coherence Tomography (OCT) systems can provide three-dimensional imaging through reasonably-opaque materials with micrometre resolution, coupled to a single optical axis point using optical fibre cables. Developed for imaging the human eye, OCT has been used for the detection of skin cancers and endoscopically in the human body. Industrial applications are growing in popularity including for the monitoring of bond-curing in aerospace, for production-line non-destructive-testing, and for medical device manufacturing and drug encapsulation monitoring. A dual beam Optical Coherence Tomography system has been developed capable of simultaneously imaging microfluidic channel structures, and tracking particles seeded into the flow to measure high velocity flows, using only a single optical access point. This is achieved via a dual optical fibre bundle for light delivery to the sample and a custom high-speed dual channel OCT instrument using an akinetic sweep wavelength laser. The system has 10 μm resolution in air and a sweeping rate of 96 kHz. This OCT system was used to monitor microfluidic flows in 800 μm deep test chips and Poiseuille flows were observed

    LUX-ZEPLIN (LZ) Conceptual Design Report

    Full text link
    The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given.Comment: 278 pages. Submitted to the Department of Energy as part of the documentation for the Critical Decision Number One (CD-1) management process. Report also available by chapter at http://hep.ucsb.edu/LZ/CDR. This version includes corrections of minor typographic error

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    LUX-ZEPLIN (LZ) Technical Design Report

    Full text link
    In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters.Comment: 392 pages. Submitted to the Department of Energy as part of the documentation for the Critical Decision Numbers Two and Three (CD-2 and CD-3) management processes. Report also available by chapter at <a href="http://hep.ucsb.edu/LZ/TDR/">this URL</a

    GSI Scientific Report 2013

    Get PDF

    Optimization Studies for the COBRA Neutrinoless Double-Beta Decay Experiment and Results from a Prototype

    Get PDF
    The COBRA experiment uses Cadmium Zinc Telluride: CZT) room-temperature semiconductor detectors to search for the neutrinoless double-beta decay of cadmium-116. While the experiment has produced globally competitive half-life limits with data from coplanar-grid CZT detectors, a future ton-scale iteration could set limits constraining the effective Majorana neutrino mass to less than 100 meV. The aim of this work is to determine the optimal CZT detector type for such an experiment. First, an overview of the relevant neutrino physics as well as an introduction to the COBRA experiment is presented. The performance characteristics and design criteria for CZT detectors are then covered, both in general and as they relate to COBRA. Simulations and prototype experiments have been performed using two of the detector design candidates. The method and results are discussed in detail. Finally, the prototype is compared with other CZT detector designs in the context of performance and scalability for a 420 kg COBRA experiment

    Highly Multiplexed Superconducting Detectors and Readout Electronics for Balloon-Borne and Ground-Based Far-Infrared Imaging and Polarimetry

    Get PDF
    abstract: This dissertation details the development of an open source, frequency domain multiplexed (FDM) readout for large-format arrays of superconducting lumped-element kinetic inductance detectors (LEKIDs). The system architecture is designed to meet the requirements of current and next generation balloon-borne and ground-based submillimeter (sub-mm), far-infrared (FIR) and millimeter-wave (mm-wave) astronomical cameras, whose science goals will soon drive the pixel counts of sub-mm detector arrays from the kilopixel to the megapixel regime. The in-flight performance of the readout system was verified during the summer, 2018 flight of ASI's OLIMPO balloon-borne telescope, from Svalbard, Norway. This was the first flight for both LEKID detectors and their associated readout electronics. In winter 2019/2020, the system will fly on NASA's long-duration Balloon Borne Large Aperture Submillimeter Telescope (BLAST-TNG), a sub-mm polarimeter which will map the polarized thermal emission from cosmic dust at 250, 350 and 500 microns (spatial resolution of 30", 41" and 59"). It is also a core system in several upcoming ground based mm-wave instruments which will soon observe at the 50 m Large Millimeter Telescope (e.g., TolTEC, SuperSpec, MUSCAT), at Sierra Negra, Mexico. The design and verification of the FPGA firmware, software and electronics which make up the system are described in detail. Primary system requirements are derived from the science objectives of BLAST-TNG, and discussed in the context of relevant size, weight, power and cost (SWaP-C) considerations for balloon platforms. The system was used to characterize the instrumental performance of the BLAST-TNG receiver and detector arrays in the lead-up to the 2019/2020 flight attempt from McMurdo Station, Antarctica. The results of this characterization are interpreted by applying a parametric software model of a LEKID detector to the measured data in order to estimate important system parameters, including the optical efficiency, optical passbands and sensitivity. The role that magnetic fields (B-fields) play in shaping structures on various scales in the interstellar medium is one of the central areas of research which is carried out by sub-mm/FIR observatories. The Davis-Chandrasekhar-Fermi Method (DCFM) is applied to a BLASTPol 2012 map (smoothed to 5') of the inner ~1.25 deg2 of the Carina Nebula Complex (CNC, NGC 3372) in order to estimate the strength of the B-field in the plane-of-the-sky (B-pos). The resulting map contains estimates of B-pos along several thousand sightlines through the CNC. This data analysis pipeline will be used to process maps of the CNC and other science targets which will be produced during the upcoming BLAST-TNG flight. A target selection survey of five nearby external galaxies which will be mapped during the flight is also presented.Dissertation/ThesisDoctoral Dissertation Astrophysics 201
    corecore