873 research outputs found

    FO-definable transformations of infinite strings

    Get PDF
    The theory of regular and aperiodic transformations of finite strings has recently received a lot of interest. These classes can be equivalently defined using logic (Monadic second-order logic and first-order logic), two-way machines (regular two-way and aperiodic two-way transducers), and one-way register machines (regular streaming string and aperiodic streaming string transducers). These classes are known to be closed under operations such as sequential composition and regular (star-free) choice; and problems such as functional equivalence and type checking, are decidable for these classes. On the other hand, for infinite strings these results are only known for ω\omega-regular transformations: Alur, Filiot, and Trivedi studied transformations of infinite strings and introduced an extension of streaming string transducers over ω\omega-strings and showed that they capture monadic second-order definable transformations for infinite strings. In this paper we extend their work to recover connection for infinite strings among first-order logic definable transformations, aperiodic two-way transducers, and aperiodic streaming string transducers

    First-order definable string transformations

    Get PDF
    The connection between languages defined by computational models and logic for languages is well-studied. Monadic second-order logic and finite automata are shown to closely correspond to each-other for the languages of strings, trees, and partial-orders. Similar connections are shown for first-order logic and finite automata with certain aperiodicity restriction. Courcelle in 1994 proposed a way to use logic to define functions over structures where the output structure is defined using logical formulas interpreted over the input structure. Engelfriet and Hoogeboom discovered the corresponding "automata connection" by showing that two-way generalised sequential machines capture the class of monadic-second order definable transformations. Alur and Cerny further refined the result by proposing a one-way deterministic transducer model with string variables---called the streaming string transducers---to capture the same class of transformations. In this paper we establish a transducer-logic correspondence for Courcelle's first-order definable string transformations. We propose a new notion of transition monoid for streaming string transducers that involves structural properties of both underlying input automata and variable dependencies. By putting an aperiodicity restriction on the transition monoids, we define a class of streaming string transducers that captures exactly the class of first-order definable transformations.Comment: 31 page

    In the Maze of Data Languages

    Full text link
    In data languages the positions of strings and trees carry a label from a finite alphabet and a data value from an infinite alphabet. Extensions of automata and logics over finite alphabets have been defined to recognize data languages, both in the string and tree cases. In this paper we describe and compare the complexity and expressiveness of such models to understand which ones are better candidates as regular models

    Aperiodic String Transducers

    Full text link
    Regular string-to-string functions enjoy a nice triple characterization through deterministic two-way transducers (2DFT), streaming string transducers (SST) and MSO definable functions. This result has recently been lifted to FO definable functions, with equivalent representations by means of aperiodic 2DFT and aperiodic 1-bounded SST, extending a well-known result on regular languages. In this paper, we give three direct transformations: i) from 1-bounded SST to 2DFT, ii) from 2DFT to copyless SST, and iii) from k-bounded to 1-bounded SST. We give the complexity of each construction and also prove that they preserve the aperiodicity of transducers. As corollaries, we obtain that FO definable string-to-string functions are equivalent to SST whose transition monoid is finite and aperiodic, and to aperiodic copyless SST

    The descriptive complexity approach to LOGCFL

    Full text link
    Building upon the known generalized-quantifier-based first-order characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's ``hardest context-free language'' is LOGCFL-complete under quantifier-free BIT-free projections. We then prove that FO with unary groupoidal quantifiers is strictly more expressive with the BIT predicate than without. Considering a particular groupoidal quantifier, we prove that first-order logic with majority of pairs is strictly more expressive than first-order with majority of individuals. As a technical tool of independent interest, we define the notion of an aperiodic nondeterministic finite automaton and prove that FO translations are precisely the mappings computed by single-valued aperiodic nondeterministic finite transducers.Comment: 10 pages, 1 figur

    Regular and First Order List Functions

    Get PDF
    We define two classes of functions, called regular (respectively, first-order) list functions, which manipulate objects such as lists, lists of lists, pairs of lists, lists of pairs of lists, etc. The definition is in the style of regular expressions: the functions are constructed by starting with some basic functions (e.g. projections from pairs, or head and tail operations on lists) and putting them together using four combinators (most importantly, composition of functions). Our main results are that first-order list functions are exactly the same as first-order transductions, under a suitable encoding of the inputs; and the regular list functions are exactly the same as MSO-transductions
    • …
    corecore