16 research outputs found

    ランダム・テレグラフ・ノイズの微細MOSFETへの影響に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    Charakterisierung von Gate-Oxiden mittels Charge-Pumping und 1/ f-Rauschanalysen

    Get PDF
    [no abstract

    Low frequency noise and charge trapping in MOSFETs

    Get PDF

    Low-frequency noise in downscaled silicon transistors: Trends, theory and practice

    Get PDF
    By the continuing downscaling of sub-micron transistors in the range of few to one deca-nanometers, we focus on the increasing relative level of the low-frequency noise in these devices. Large amount of published data and models are reviewed and summarized, in order to capture the state-of-the-art, and to observe that the 1/area scaling of low-frequency noise holds even for carbon nanotube devices, but the noise becomes too large in order to have fully deterministic devices with area less than 10nm×10nm. The low-frequency noise models are discussed from the point of view that the noise can be both intrinsic and coupled to the charge transport in the devices, which provided a coherent picture, and more interestingly, showed that the models converge each to other, despite the many issues that one can find for the physical origin of each model. Several derivations are made to explain crossovers in noise spectra, variable random telegraph amplitudes, duality between energy and distance of charge traps, behaviors and trends for figures of merit by device downscaling, practical constraints for micropower amplifiers and dependence of phase noise on the harmonics in the oscillation signal, uncertainty and techniques of averaging by noise characterization. We have also shown how the unavoidable statistical variations by fabrication is embedded in the devices as a spatial “frozen noise”, which also follows 1/area scaling law and limits the production yield, from one side, and from other side, the “frozen noise” contributes generically to temporal 1/f noise by randomly probing the embedded variations during device operation, owing to the purely statistical accumulation of variance that follows from cause-consequence principle, and irrespectively of the actual physical process. The accumulation of variance is known as statistics of “innovation variance”, which explains the nearly log-normal distributions in the values for low-frequency noise parameters gathered from different devices, bias and other conditions, thus, the origin of geometric averaging in low-frequency noise characterizations. At present, the many models generally coincide each with other, and what makes the difference, are the values, which, however, scatter prominently in nanodevices. Perhaps, one should make some changes in the approach to the low-frequency noise in electronic devices, to emphasize the “statistics behind the numbers”, because the general physical assumptions in each model always fail at some point by the device downscaling, but irrespectively of that, the statistics works, since the low-frequency noise scales consistently with the 1/area law

    Strain-Engineered MOSFETs

    Get PDF
    This book brings together new developments in the area of strain-engineered MOSFETs using high-mibility substrates such as SIGe, strained-Si, germanium-on-insulator and III-V semiconductors into a single text which will cover the materials aspects, principles, and design of advanced devices, their fabrication and applications. The book presents a full TCAD methodology for strain-engineering in Si CMOS technology involving data flow from process simulation to systematic process variability simulation and generation of SPICE process compact models for manufacturing for yield optimization

    Developement of simulation tools for the analysis of variability in advanced semiconductor electron devices

    Get PDF
    The progressive down-scaling has been the driving force behind the integrated circuit (IC) industry for several decades, continuously delivering higher component densities and greater chip functionality, while reducing the cost per function from one CMOS technology generation to the next. Moore’s law boosts IC industry profits by constantly releasing high-quality and inexpensive electronic applications into the market using new technologies. From the 1 m gate lengths of the eighties to the 35 nm gate lengths of contemporary 22 nm technology, the industry successfully achieved its scaling goals, not only miniaturizing devices but also improving device performance

    Compact Models for Integrated Circuit Design

    Get PDF
    This modern treatise on compact models for circuit computer-aided design (CAD) presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models. Featuring exercise problems at the end of each chapter and extensive references at the end of the book, the text supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices. It ensures even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts

    Journal of Telecommunications and Information Technology, 2005, nr 1

    Get PDF

    Fiabilisation de Convertisseurs Analogique-Num´erique a Modulation Sigma-Delta

    Get PDF
    Due to the continuously scaling down of CMOS technology, system-on-chips (SoCs) reliability becomes important in sub-90 nm CMOS node. Integrated circuits and systems applied to aerospace, avionic, vehicle transport and biomedicine are highly sensitive to reliability problems such as ageing mechanisms and parametric process variations. Novel SoCs with new materials and architectures of high complexity further aggravate reliability as a critical aspect of process integration. For instance, random and systematic defects as well as parametric process variations have a large influence on quality and yield of the manufactured ICs, right after production. During ICs usage time, time-dependent ageing mechanisms such as negative bias temperature instability (NBTI) and hot carrier injection (HCI) can significantly degrade ICs performance.La fiabilit´e des ICs est d´efinie ainsi : la capacit´e d’un circuit ou un syst`eme int´egr´e `amaintenir ses param`etres durant une p´eriode donn´ee sous des conditions d´efinies. Les rapportsITRS 2011 consid`ere la fiabilit´e comme un aspect critique du processus d’int´egration.Par cons´equent, il faut faire appel des m´ethodologies innovatrices prenant en comptela fiabilit´e afin d’assurer la fonctionnalit´e du SoCs et la fiabilit´e dans les technologiesCMOS `a l’´echelle nanom´etrique. Cela nous permettra de d´evelopper des m´ethodologiesind´ependantes du design et de la technologie CMOS, en revanche, sp´ecialis´ees en fiabilit´e
    corecore