21 research outputs found

    FISST Based Method for Multi-Target Tracking in the Image Plane of Optical Sensors

    Get PDF
    A finite set statistics (FISST)-based method is proposed for multi-target tracking in the image plane of optical sensors. The method involves using signal amplitude information in probability hypothesis density (PHD) filter which is derived from FISST to improve multi-target tracking performance. The amplitude of signals generated by the optical sensor is modeled first, from which the amplitude likelihood ratio between target and clutter is derived. An alternative approach is adopted for the situations where the signal noise ratio (SNR) of target is unknown. Then the PHD recursion equations incorporated with signal information are derived and the Gaussian mixture (GM) implementation of this filter is given. Simulation results demonstrate that the proposed method achieves significantly better performance than the generic PHD filter. Moreover, our method has much lower computational complexity in the scenario with high SNR and dense clutter

    Exploring space situational awareness using neuromorphic event-based cameras

    Get PDF
    The orbits around earth are a limited natural resource and one that hosts a vast range of vital space-based systems that support international systems use by both commercial industries, civil organisations, and national defence. The availability of this space resource is rapidly depleting due to the ever-growing presence of space debris and rampant overcrowding, especially in the limited and highly desirable slots in geosynchronous orbit. The field of Space Situational Awareness encompasses tasks aimed at mitigating these hazards to on-orbit systems through the monitoring of satellite traffic. Essential to this task is the collection of accurate and timely observation data. This thesis explores the use of a novel sensor paradigm to optically collect and process sensor data to enhance and improve space situational awareness tasks. Solving this issue is critical to ensure that we can continue to utilise the space environment in a sustainable way. However, these tasks pose significant engineering challenges that involve the detection and characterisation of faint, highly distant, and high-speed targets. Recent advances in neuromorphic engineering have led to the availability of high-quality neuromorphic event-based cameras that provide a promising alternative to the conventional cameras used in space imaging. These cameras offer the potential to improve the capabilities of existing space tracking systems and have been shown to detect and track satellites or ‘Resident Space Objects’ at low data rates, high temporal resolutions, and in conditions typically unsuitable for conventional optical cameras. This thesis presents a thorough exploration of neuromorphic event-based cameras for space situational awareness tasks and establishes a rigorous foundation for event-based space imaging. The work conducted in this project demonstrates how to enable event-based space imaging systems that serve the goals of space situational awareness by providing accurate and timely information on the space domain. By developing and implementing event-based processing techniques, the asynchronous operation, high temporal resolution, and dynamic range of these novel sensors are leveraged to provide low latency target acquisition and rapid reaction to challenging satellite tracking scenarios. The algorithms and experiments developed in this thesis successfully study the properties and trade-offs of event-based space imaging and provide comparisons with traditional observing methods and conventional frame-based sensors. The outcomes of this thesis demonstrate the viability of event-based cameras for use in tracking and space imaging tasks and therefore contribute to the growing efforts of the international space situational awareness community and the development of the event-based technology in astronomy and space science applications

    Tracking random finite objects using 3D-LIDAR in marine environments

    Get PDF
    This paper presents a random finite set theoretic formulation for multi-object tracking as perceived by a 3D-LIDAR in a dynamic environment. It is mainly concerned with the joint detection and estimation of the unknown and time varying number of objects present in the environment and the dynamic state of these objects, given a set of measurements. This problem is particularly challenging in cluttered dynamic environments such as in urban settings or marine environments, because, given a measurement set, there is absolutely no knowledge of which object generated which measurement, and the detected measurements are indistinguishable from false alarms. The proposed approach to multi-object tracking is based on the rigorous theory of finite set statistics (FISST). The optimal Bayesian multi-object tracking is not yet practical due to its computational complexity. However, a practical alternative to the optimal filter is the probability hypothesis density (PHD) filter, that propagates the first order statistical moment of the full multi-object posterior distribution. In contrast to classical approaches, this random finite set framework does not require any explicit data associations. In this paper, a Gaussian mixture approximation of the PHD filter is applied to track variable number of objects from 3D-LIDAR measurements by estimating both the number of objects and their respective locations in each scan. Experimental results obtained in marine environments demonstrate the efficacy and tracking performance of the proposed approach.MIT-Singapore Allianc
    corecore