527 research outputs found

    Design of a Remote Signal Processing Student Lab

    Full text link
    [EN] We describe our experience of introducing digital signal processing (DSP) concepts via a software-defined radio project using a very inexpensive TV USB capture dongle. Through a series of weekly lab exercises, the students learned and applied DSP concepts to design a completely digital FM receiver. The proposed lab experience introduced concepts, such as sampling, IQ signal representation, sample rate conversion, filter design, filter delays, and more, all with an attractive learn-by-doing approach. The first offering of this course initially took place in Fall 2014 and has been successfully offered and repeated with growing success ever since. Our experience can serve as a proof of concept of the possibility of carrying out, in a massive open online course-like fashion, certain engineering labs that require inexpensive and readily available hardware components.This work was supported by the Universidad Internacional de la Rioja through the Research Institute for Innovation and Technology in Education.Albiol Colomer, A.; Corbi, A.; Burgos, D. (2017). Design of a Remote Signal Processing Student Lab. IEEE Access. 5:16068-16076. doi:10.1109/ACCESS.2017.2736165S1606816076

    Implementation and evaluation of a mobile Android application for auditory stimulation of chronic tinnitus patients

    Get PDF
    Tinnitus is a common symptom where the affected person perceives a sound without an external source. To support the development of new therapies a tinnitus tracking platform, including mobile applications, was developed at Ulm University in cooperation with the tinnitus research initiative. In the future, these mobile applications should be extended to include a simple game that requires the user to concentrate on an auditory stimulation, distracting them from their tinnitus. This is accomplished by using localization of an audio source as a game mechanic. The measurement of the offset between the position the user guessed for an audio source and its actual location could also serves as an additional data point. In this thesis an application for the Android operating system is designed that implements such a game and serves as a proof of concept. Since the Android API does not include the capability for positional audio, a separate audio API based on OpenAL was created as part of this thesis. This API as well as the framework developed to implement the game are designed to be reusable for future, similar projects. The game concept was also evaluated in a study using the demonstration application

    A room acoustics measurement system using non-invasive microphone arrays

    Get PDF
    This thesis summarises research into adaptive room correction for small rooms and pre-recorded material, for example music of films. A measurement system to predict the sound at a remote location within a room, without a microphone at that location was investigated. This would allow the sound within a room to be adaptively manipulated to ensure that all listeners received optimum sound, therefore increasing their enjoyment. The solution presented used small microphone arrays, mounted on the room's walls. A unique geometry and processing system was designed, incorporating three processing stages, temporal, spatial and spectral. The temporal processing identifies individual reflection arrival times from the recorded data. Spatial processing estimates the angles of arrival of the reflections so that the three-dimensional coordinates of the reflections' origin can be calculated. The spectral processing then estimates the frequency response of the reflection. These estimates allow a mathematical model of the room to be calculated, based on the acoustic measurements made in the actual room. The model can then be used to predict the sound at different locations within the room. A simulated model of a room was produced to allow fast development of algorithms. Measurements in real rooms were then conducted and analysed to verify the theoretical models developed and to aid further development of the system. Results from these measurements and simulations, for each processing stage are presented

    A NEW METHOD OF WAVELENGTH SCANNING INTERFEROMETRY FOR INSPECTING SURFACES WITH MULTI-SIDE HIGH-SLOPED FACETS

    Get PDF
    With the development of modern advanced manufacturing technologies, the requirements for ultra-precision structured surfaces are increasing rapidly for both high value-added products and scientific research. Examples of the components encompassing the structures include brightness enhancement film (BEF), optical gratings and so forth. Besides, specially designed structured surfaces, namely metamaterials can lead to specified desirable coherence, angular or spatial characteristics that the natural materials do not possess. This promising field attracts a large amount of funding and investments. However, owing to a lack of effective means of inspecting the structured surfaces, the manufacturing process is heavily reliant on the experience of fabrication operators adopting an expensive trial-and-error approach, resulting in high scrap rates up to 50-70% of the manufactured items. Therefore, overcoming this challenge becomes increasingly valuable. The thesis proposes a novel methodology to tackle this challenge by setting up an apparatus encompassing multiple measurement probes to attain the dataset for each facet of the structured surface and then blending the acquired datasets together, based on the relative location of the probes, which is achieved via the system calibration. The method relies on wavelength scanning interferometry (WSI), which can achieve areal measurement with axial resolutions approaching the nanometre without the requirement for the mechanical scanning of either the sample or optics, unlike comparable techniques such as coherence scanning interferometry (CSI). This lack of mechanical scanning opens up the possibility of using a multi-probe optics system to provide simultaneous measurement with multi adjacent fields of view. The thesis presents a proof-of-principle demonstration of a dual-probe wavelength scanning interferometry (DPWSI) system capable of measuring near-right-angle V-groove structures in a single measurement acquisition. The optical system comprises dual probes, with orthogonal measurement planes. For a given probe, a range of V-groove angles is measurable, limited by the acceptance angle of the objective lenses employed. This range can be expanded further by designing equivalent probe heads with varying angular separation. More complicated structured surfaces can be inspected by increasing the number of probes. The fringe analysis algorithms for WSI are discussed in detail, some improvements are proposed, and experimental validation is conducted. The scheme for calibrating the DPSWI system and obtaining the relative location between the probes to achieve the whole topography is implemented and presented in full. The appraisal of the DPWSI system is also carried out using a multi-step diamond-turned specimen and a sawtooth brightness enhancement film (BEF). The results showed that the proposed method could achieve the inspection of the near-right-angle V-groove structures with submicrometre scale vertical resolution and micrometre level lateral resolution

    Ambisonics

    Get PDF
    This open access book provides a concise explanation of the fundamentals and background of the surround sound recording and playback technology Ambisonics. It equips readers with the psychoacoustical, signal processing, acoustical, and mathematical knowledge needed to understand the inner workings of modern processing utilities, special equipment for recording, manipulation, and reproduction in the higher-order Ambisonic format. The book comes with various practical examples based on free software tools and open scientific data for reproducible research. The book’s introductory section offers a perspective on Ambisonics spanning from the origins of coincident recordings in the 1930s to the Ambisonic concepts of the 1970s, as well as classical ways of applying Ambisonics in first-order coincident sound scene recording and reproduction that have been practiced since the 1980s. As, from time to time, the underlying mathematics become quite involved, but should be comprehensive without sacrificing readability, the book includes an extensive mathematical appendix. The book offers readers a deeper understanding of Ambisonic technologies, and will especially benefit scientists, audio-system and audio-recording engineers. In the advanced sections of the book, fundamentals and modern techniques as higher-order Ambisonic decoding, 3D audio effects, and higher-order recording are explained. Those techniques are shown to be suitable to supply audience areas ranging from studio-sized to hundreds of listeners, or headphone-based playback, regardless whether it is live, interactive, or studio-produced 3D audio material

    Tele-immersive display with live-streamed video.

    Get PDF
    Tang Wai-Kwan.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 88-95).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Applications --- p.3Chapter 1.2 --- Motivation and Goal --- p.6Chapter 1.3 --- Thesis Outline --- p.7Chapter 2 --- Background and Related Work --- p.8Chapter 2.1 --- Panoramic Image Navigation --- p.8Chapter 2.2 --- Image Mosaicing --- p.9Chapter 2.2.1 --- Image Registration --- p.10Chapter 2.2.2 --- Image Composition --- p.12Chapter 2.3 --- Immersive Display --- p.13Chapter 2.4 --- Video Streaming --- p.14Chapter 2.4.1 --- Video Coding --- p.15Chapter 2.4.2 --- Transport Protocol --- p.18Chapter 3 --- System Design --- p.19Chapter 3.1 --- System Architecture --- p.19Chapter 3.1.1 --- Video Capture Module --- p.19Chapter 3.1.2 --- Video Streaming Module --- p.23Chapter 3.1.3 --- Stitching and Rendering Module --- p.24Chapter 3.1.4 --- Display Module --- p.24Chapter 3.2 --- Design Issues --- p.25Chapter 3.2.1 --- Modular Design --- p.25Chapter 3.2.2 --- Scalability --- p.26Chapter 3.2.3 --- Workload distribution --- p.26Chapter 4 --- Panoramic Video Mosaic --- p.28Chapter 4.1 --- Video Mosaic to Image Mosaic --- p.28Chapter 4.1.1 --- Assumptions --- p.29Chapter 4.1.2 --- Processing Pipeline --- p.30Chapter 4.2 --- Camera Calibration --- p.33Chapter 4.2.1 --- Perspective Projection --- p.33Chapter 4.2.2 --- Distortion --- p.36Chapter 4.2.3 --- Calibration Procedure --- p.37Chapter 4.3 --- Panorama Generation --- p.39Chapter 4.3.1 --- Cylindrical and Spherical Panoramas --- p.39Chapter 4.3.2 --- Homography --- p.41Chapter 4.3.3 --- Homography Computation --- p.42Chapter 4.3.4 --- Error Minimization --- p.44Chapter 4.3.5 --- Stitching Multiple Images --- p.46Chapter 4.3.6 --- Seamless Composition --- p.47Chapter 4.4 --- Image Mosaic to Video Mosaic --- p.49Chapter 4.4.1 --- Varying Intensity --- p.49Chapter 4.4.2 --- Video Frame Management --- p.50Chapter 5 --- Immersive Display --- p.52Chapter 5.1 --- Human Perception System --- p.52Chapter 5.2 --- Creating Virtual Scene --- p.53Chapter 5.3 --- VisionStation --- p.54Chapter 5.3.1 --- F-Theta Lens --- p.55Chapter 5.3.2 --- VisionStation Geometry --- p.56Chapter 5.3.3 --- Sweet Spot Relocation and Projection --- p.57Chapter 5.3.4 --- Sweet Spot Relocation in Vector Representation --- p.61Chapter 6 --- Video Streaming --- p.65Chapter 6.1 --- Video Compression --- p.66Chapter 6.2 --- Transport Protocol --- p.66Chapter 6.3 --- Latency and Jitter Control --- p.67Chapter 6.4 --- Synchronization --- p.70Chapter 7 --- Implementation and Results --- p.71Chapter 7.1 --- Video Capture --- p.71Chapter 7.2 --- Video Streaming --- p.73Chapter 7.2.1 --- Video Encoding --- p.73Chapter 7.2.2 --- Streaming Protocol --- p.75Chapter 7.3 --- Implementation Results --- p.76Chapter 7.3.1 --- Indoor Scene --- p.76Chapter 7.3.2 --- Outdoor Scene --- p.78Chapter 7.4 --- Evaluation --- p.78Chapter 8 --- Conclusion --- p.83Chapter 8.1 --- Summary --- p.83Chapter 8.2 --- Future Directions --- p.84Chapter A --- Parallax --- p.8
    • …
    corecore