3,771 research outputs found

    FIR variable digital filter with signed power-of-two coefficients

    Get PDF
    Variable digital filters (VDFs) are useful for various signal processing and communication applications where the frequency characteristics, such as fractional delays and cutoff frequencies, can be varied online. In this paper, we investigate the design of VDFs with discrete coefficients as a means of achieving low complexity and efficient hardware implementation. The filter coefficients are expressed as the sum of signed power-of-two terms with a restriction on the total number of power-of-two for the filter coefficients. An efficient design procedure is proposed that includes an improved method for handling the quantization of the VDF coefficients for both the min-max and the least-square criteria leading to an optimum quantized solution. For the least-square criterion, a reduced search region around the optimum quantized solution is further constructed and the branch and bound method in conjunction with an efficient branch cutting scheme is presented to search for an optimum solution in this reduced region

    A New Low Complexity Uniform Filter Bank Based on the Improved Coefficient Decimation Method

    Get PDF
    In this paper, we propose a new uniform filter bank (FB) based on the improved coefficient decimation method (ICDM). In the proposed FB’s design, the ICDM is used to obtain different multi-band frequency responses using a single lowpass prototype filter. The desired subbands are individually obtained from these multi-band frequency responses by using low order frequency response masking filters and their corresponding ICDM output frequency responses. We show that the proposed FB is a very low complexity alternative to the other FBs in literature, especially the widely used discrete Fourier transform based FB (DFTFB) and the CDM based FB (CDFB). The proposed FB can have a higher number of subbands with twice the center frequency resolution when compared with the CDFB and DFTFB. Design example and implementation results show that our FB achieves 86.59% and 58.84% reductions in resource utilizations and 76.95% and 47.09% reductions in power consumptions when compared with the DFTFB and CDFB respectively

    Symbol Synchronization for SDR Using a Polyphase Filterbank Based on an FPGA

    Get PDF
    This paper is devoted to the proposal of a highly efficient symbol synchronization subsystem for Software Defined Radio. The proposed feedback phase-locked loop timing synchronizer is suitable for parallel implementation on an FPGA. The polyphase FIR filter simultaneously performs matched-filtering and arbitrary interpolation between acquired samples. Determination of the proper sampling instant is achieved by selecting a suitable polyphase filterbank using a derived index. This index is determined based on the output either the Zero-Crossing or Gardner Timing Error Detector. The paper will extensively focus on simulation of the proposed synchronization system. On the basis of this simulation, a complete, fully pipelined VHDL description model is created. This model is composed of a fully parallel polyphase filterbank based on distributed arithmetic, timing error detector and interpolation control block. Finally, RTL synthesis on an Altera Cyclone IV FPGA is presented and resource utilization in comparison with a conventional model is analyzed

    Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks

    Get PDF
    A lattice structure and an algorithm are presented for the design of two-channel QMF (quadrature mirror filter) banks, satisfying a sufficient condition for perfect reconstruction. The structure inherently has the perfect-reconstruction property, while the algorithm ensures a good stopband attenuation for each of the analysis filters. Implementations of such lattice structures are robust in the sense that the perfect-reconstruction property is preserved in spite of coefficient quantization. The lattice structure has the hierarchical property that a higher order perfect-reconstruction QMF bank can be obtained from a lower order perfect-reconstruction QMF bank, simply by adding more lattice sections. Several numerical examples are provided in the form of design tables

    Multiplierless CSD techniques for high performance FPGA implementation of digital filters.

    Get PDF
    I leverage FastCSD to develop a new, high performance iterative multiplierless structure based on a novel real-time CSD recoding, so that more zero partial products are introduced. Up to 66.7% zero partial products occur compared to 50% in the traditional modified Booth's recoding. Also, this structure reduces the non-zero partial products to a minimum. As a result, the number of arithmetic operations in the carry-save structure is reduced. Thus, an overall speed-up, as well as low-power consumption can be achieved. Furthermore, because the proposed structure involves real time CSD recoding and does not require a fixed value for the multiplier input to be known a priori, the proposed multiplier can be applied to implement digital filters with non-fixed filter coefficients, such as adaptive filters.My work is based on a dramatic new technique for converting between 2's complement and CSD number systems, and results in high-performance structures that are particularly effective for implementing adaptive systems in reconfigurable logic.My research focus is on two key ideas for improving DSP performance: (1) Develop new high performance, efficient shift-add techniques ("multiplierless") to implement the multiply-add operations without the need for a traditional multiplier structure. (2) There is a growing trend toward design prototyping and even production in FPGAs as opposed to dedicated DSP processors or ASICs; leverage this trend synergistically with the new multiplierless structures to improve performance.Implementation of digital signal processing (DSP) algorithms in hardware, such as field programmable gate arrays (FPGAs), requires a large number of multipliers. Fast, low area multiply-adds have become critical in modern commercial and military DSP applications. In many contemporary real-time DSP and multimedia applications, system performance is severely impacted by the limitations of currently available speed, energy efficiency, and area requirement of an onboard silicon multiplier.I also introduce a new multi-input Canonical Signed Digit (CSD) multiplier unit, which requires fewer shift/add/subtract operations and reduced CSD number conversion overhead compared to existing techniques. This results in reduced power consumption and area requirements in the hardware implementation of DSP algorithms. Furthermore, because all the products are produced simultaneously, the multiplication speed and thus the throughput are improved. The multi-input multiplier unit is applied to implement digital filters with non-fixed filter coefficients, such as adaptive filters. The implementation cost of these digital filters can be further reduced by limiting the wordlength of the input signal with little or no sacrifice to the filter performance, which is confirmed by my simulation results. The proposed multiplier unit can also be applied to other DSP algorithms, such as digital filter banks or matrix and vector multiplications.Finally, the tradeoff between filter order and coefficient length in the design and implementation of high-performance filters in Field Programmable Gate Arrays (FPGAs) is discussed. Non-minimum order FIR filters are designed for implementation using Canonical Signed Digit (CSD) multiplierless implementation techniques. By increasing the filter order, the length of the coefficients can be decreased without reducing the filter performance. Thus, an overall hardware savings can be achieved.Adaptive system implementations require real-time conversion of coefficients to Canonical Signed Digit (CSD) or similar representations to benefit from multiplierless techniques for implementing filters. Multiplierless approaches are used to reduce the hardware and increase the throughput. This dissertation introduces the first non-iterative hardware algorithm to convert 2's complement numbers to their CSD representations (FastCSD) using a fixed number of shift and logic operations. As a result, the power consumption and area requirements required for hardware implementation of DSP algorithms in which the coefficients are not known a priori can be greatly reduced. Because all CSD digits are produced simultaneously, the conversion speed and thus the throughput are improved when compared to overlap-and-scan techniques such as Booth's recoding

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications

    Low power two-channel PR QMF bank using CSD coefficients and FPGA implementation

    Get PDF
    Finite impulse response (FIR) filter is a fundamental component in digital signal processing. Two-channel perfect reconstruction (PR) QMF banks are widely used in many applications, such as image coding, speech processing and communications. A practical lattice realization of two-channel QMF bank is developed in this thesis for dealing with the wide dynamic range of intermediate results in lattice structure. To achieve low complexity and low power consumption of two-channel perfect reconstruction QMF bank, canonical signed digit (CSD) number system is used for representing lattice coefficients in FPGA implementation. Utilization of CSD number system in lattice structures leads to more efficient hardware implementation. Many fixed-point simulations were done in Matlab in order to obtain the proper fixed-point word-length for different signals. Finally, FPGA implementation results show that perfect reconstruction signal is obtained by using the proposed method. Furthermore, the power consumption using CSD number system for representing lattice coefficients is less than that obtained by using two\u27s complement number system in two-channel QMF bank. A low complexity and low power two-channel PR QMF bank using CSD coefficients was realized

    Analysis and application of digital spectral warping in analog and mixed-signal testing

    Get PDF
    Spectral warping is a digital signal processing transform which shifts the frequencies contained within a signal along the frequency axis. The Fourier transform coefficients of a warped signal correspond to frequency-domain 'samples' of the original signal which are unevenly spaced along the frequency axis. This property allows the technique to be efficiently used for DSP-based analog and mixed-signal testing. The analysis and application of spectral warping for test signal generation, response analysis, filter design, frequency response evaluation, etc. are discussed in this paper along with examples of the software and hardware implementation
    corecore