12 research outputs found

    FILTWAM - A Framework for Online Game-based Communication Skills Training - Using Webcams and Microphones for Enhancing Learner Support

    Get PDF
    Bahreini, K., Nadolski, R., Qi, W., & Westera, W. (2012). FILTWAM - A Framework for Online Game-based Communication Skills Training - Using Webcams and Microphones for Enhancing Learner Support. In P. Felicia (Ed.), The 6th European Conference on Games Based Learning - ECGBL 2012 (pp. 39-48). Cork, Ireland: University College Cork and the Waterford Institute of Technology.This paper provides an overarching framework embracing conceptual and technical frameworks for improving the online communication skills of lifelong learners. This overarching framework is called FILTWAM (Framework for Improving Learning Through Webcams And Microphones). We propose a novel web-based communication training approach, one which incorporates relevant and timely feedback based upon learner's facial expressions and verbalizations. This data is collected using webcams with their incorporated image and microphones with their sound waves, which can continuously and unobtrusively monitor and interpret learners' emotional behaviour into emotional states. The feedback generated from the webcams is expected to enhance learner’s awareness of their own behaviour as well as to improve the alignment between their expressed behaviour and intended behaviour. Our approach emphasizes communication behaviour rather than communication content, as people mostly do not have problems with the "what" but with the 'how" in expressing their message. For our design of online game-based communication skills trainings, we use insights from face-to-face training, game-based learning, lifelong learning, and affective computing. These areas constitute starting points for moving ahead the not yet well-established area of using emotional states for improved learning. Our framework and research is situated within this latter area. A self-contained game-based training enhances flexibility and scalability, in contrast with face-to-face trainings. Furthermore, game-based training better serve the interests of lifelong learners who prefer to study at their own pace, place and time. In the future we may possibly integrate the generated feedback with EMERGO, which is a game-based toolkit for delivery of multimedia cases. Finally, we will report on a small-scale proof of concept study that on the one hand exemplifies the practical application of our framework and on the other hand provides first evaluation results on that. This study will guide further development of software and training materials and inform future research. Moreover, it will validate the use of webcam data for a real-time and adequate interpretation of facial expressions into emotional states (like sadness, anger, disgust, fear, happiness, and surprise). For this purpose, participants' behaviour is also recorded on videos so that videos will be replayed, rated, annotated and evaluated by expert observers and contrasted with participants' own opinions.CELSTEC Open University of the Netherlands, NeLL

    FILTWAM and Voice Emotion Recognition

    Get PDF
    This paper introduces the voice emotion recognition part of our framework for improving learning through webcams and microphones (FILTWAM). This framework enables multimodal emotion recognition of learners during game-based learning. The main goal of this study is to validate the use of microphone data for a real-time and adequate interpretation of vocal expressions into emotional states were the software is calibrated with end users. FILTWAM already incorporates a valid face emotion recognition module and is extended with a voice emotion recognition module. This extension aims to provide relevant and timely feedback based upon learner's vocal intonations. The feedback is expected to enhance learner’s awareness of his or her own behavior. Six test persons received the same computer-based tasks in which they were requested to mimic specific vocal expressions. Each test person mimicked 82 emotions, which led to a dataset of 492 emotions. All sessions were recorded on video. An overall accuracy of our software based on the requested emotions and the recognized emotions is a pretty good 74.6% for the emotions happy and neutral emotions; but will be improved for the lower values of an extended set of emotions. In contrast with existing software our solution allows to continuously and unobtrusively monitor learners’ intonations and convert these intonations into emotional states. This paves the way for enhancing the quality and efficacy of game-based learning by including the learner's emotional states, and links these to pedagogical scaffolding.The Netherlands Laboratory for Lifelong Learning (NELLL) of the Open University of the Netherlands

    Communication skills training exploiting multimodal emotion recognition

    Get PDF
    The teaching of communication skills is a labour-intensive task because of the detailed feedback that should be given to learners during their prolonged practice. This study investigates to what extent our FILTWAM facial and vocal emotion recognition software can be used for improving a serious game (the Communication Advisor) that delivers a web-based training of communication skills. A test group of 25 participants played the game wherein they were requested to mimic specific facial and vocal emotions. Half of the assignments included direct feedback and the other half included no feedback. It was investigated whether feedback on the mimicked emotions would lead to better learning. The results suggest the facial performance growth was found to be positive, particularly significant in the feedback condition. The vocal performance growth was significant in both conditions. The results are a significant indication that the automated feedback from the software improves learners’ communication performances.The Netherlands Laboratory for Lifelong Learning (NELLL) of the Open University Netherland

    Data Fusion for Real-time Multimodal Emotion Recognition through Webcams and Microphones in E-Learning

    Get PDF
    The original article is available on the Taylor & Francis Online website in the following link: http://www.tandfonline.com/doi/abs/10.1080/10447318.2016.1159799?journalCode=hihc20This paper describes the validation study of our software that uses combined webcam and microphone data for real-time, continuous, unobtrusive emotion recognition as part of our FILTWAM framework. FILTWAM aims at deploying a real time multimodal emotion recognition method for providing more adequate feedback to the learners through an online communication skills training. Herein, timely feedback is needed that reflects on their shown intended emotions and which is also useful to increase learners’ awareness of their own behaviour. At least, a reliable and valid software interpretation of performed face and voice emotions is needed to warrant such adequate feedback. This validation study therefore calibrates our software. The study uses a multimodal fusion method. Twelve test persons performed computer-based tasks in which they were asked to mimic specific facial and vocal emotions. All test persons’ behaviour was recorded on video and two raters independently scored the showed emotions, which were contrasted with the software recognition outcomes. A hybrid method for multimodal fusion of our multimodal software shows accuracy between 96.1% and 98.6% for the best-chosen WEKA classifiers over predicted emotions. The software fulfils its requirements of real-time data interpretation and reliable results.The Netherlands Laboratory for Lifelong Learning (NELLL) of the Open University Netherlands

    Towards Real-time Speech Emotion Recognition for Affective E-Learning

    Get PDF
    The original article is available as an open access file on the Springer website in the following link: http://link.springer.com/article/10.1007/s10639-015-9388-2This paper presents the voice emotion recognition part of the FILTWAM framework for real-time emotion recognition in affective e-learning settings. FILTWAM (Framework for Improving Learning Through Webcams And Microphones) intends to offer timely and appropriate online feedback based upon learner’s vocal intonations and facial expressions in order to foster their learning. Whereas the facial emotion recognition part has been successfully tested in a previous study, the here presented study describes the development and testing of FILTWAM's vocal emotion recognition software artefact. The main goal of this study was to show the valid use of computer microphone data for real-time and adequate interpretation of vocal intonations into extracted emotional states. The software that was developed was tested in a study with twelve participants. All participants individually received the same computer-based tasks in which they were requested eighty times to mimic specific vocal expressions (960 occurrences in total). Each individual session was recorded on video. For the validation of the voice emotion recognition software artefact, two experts annotated and rated participants' recorded behaviours. Expert findings were then compared with the software recognition results and showed an overall accuracy of Kappa of 0.743. The overall accuracy of the voice emotion recognition software artefact is 67% based on the requested emotions and the recognized emotions. Our FILTWAM-software allows to continually and unobtrusively observing learners’ behaviours and transforms these behaviours into emotional states. This paves the way for unobtrusive and real-time capturing of learners' emotional states for enhancing adaptive e-learning approaches.The Netherlands Laboratory for Lifelong Learning (NELLL) of the Open University Netherland

    Affective games provide controlable context : proposal of an experimental framework

    Get PDF
    We propose an experimental framework for Affective Computing based of video games. We developed a set of specially designed mini-games, based of carefully selected game mechanics, to evoke emotions of participants of a larger experiment. We believe, that games provide a controllable yet overall ecological environment for studying emotions. We discuss how we used our mini-games as an important counterpart of classical visual and auditory stimuli. Furthermore, we present a software tool supporting the execution and evaluation of experiments of this kind

    Analyzing how emotion awareness influences students' motivation, engagement, self-regulation and learning outcome

    Get PDF
    Starting from Volume 17 Issue 4, all published articles of the Journal of Educational Technology & Society are available under Creative Commons CC-BY-ND-NC 3.0 license.Considering social and emotional competence in learning, emotion awareness aims to detect the emotions that students show during their learning interactions and make these emotions explicit to them. Being aware of their emotions, students become more conscious of their situation, what may prompt them to behavioral change. The main goal of this work is to analyze the effects of emotion awareness, supported by specific teaching strategies, on students’ motivation, engagement, self-regulation and learning outcome in long-term blended collaborative learning practices. A bilateral goal also involves an initial study that explores the way emotion awareness affects teacher’s attitude and feedback as well as the competencies that teachers need to have in order to achieve a positive change on students’ affective and cognitive state. To this end a quasi-experimental study was designed with high school students. The results of this study show that when students are aware of their emotions and guided by specific teaching strategies, their learning performance improves in relation to their motivation, engagement and self-regulation. Likewise, when teachers are conscious of students’ emotional state their attitude and feedback become more effective and timely.Peer ReviewedPostprint (published version

    The Possibilities of Classification of Emotional States Based on User Behavioral Characteristics

    Get PDF
    The classification of user's emotions based on their behavioral characteristic, namely their keyboard typing and mouse usage pattern is an effective and non-invasive way of gathering user's data without imposing any limitations on their ability to perform tasks. To gather data for the classifier we used an application, the Emotnizer, which we had developed for this purpose. The output of the classification is categorized into 4 emotional categories from Russel's complex circular model - happiness, anger, sadness and the state of relaxation. The sample of the reference database consisted of 50 students. Multiple regression analyses gave us a model, that allowed us to predict the valence and arousal of the subject based on the input from the keyboard and mouse. Upon re-testing with another test group of 50 students and processing the data we found out our Emotnizer program can classify emotional states with an average success rate of 82.31%

    Multimodaalsel emotsioonide tuvastamisel pÔhineva inimese-roboti suhtluse arendamine

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneÜks afektiivse arvutiteaduse peamistest huviobjektidest on mitmemodaalne emotsioonituvastus, mis leiab rakendust peamiselt inimese-arvuti interaktsioonis. Emotsiooni Ă€ratundmiseks uuritakse nendes sĂŒsteemides nii inimese nĂ€oilmeid kui kakĂ”net. KĂ€esolevas töös uuritakse inimese emotsioonide ja nende avaldumise visuaalseid ja akustilisi tunnuseid, et töötada vĂ€lja automaatne multimodaalne emotsioonituvastussĂŒsteem. KĂ”nest arvutatakse mel-sageduse kepstri kordajad, helisignaali erinevate komponentide energiad ja prosoodilised nĂ€itajad. NĂ€oilmeteanalĂŒĂŒsimiseks kasutatakse kahte erinevat strateegiat. Esiteks arvutatakse inimesenĂ€o tĂ€htsamate punktide vahelised erinevad geomeetrilised suhted. Teiseks vĂ”etakse emotsionaalse sisuga video kokku vĂ€hendatud hulgaks pĂ”hikaadriteks, misantakse sisendiks konvolutsioonilisele tehisnĂ€rvivĂ”rgule emotsioonide visuaalsekseristamiseks. Kolme klassifitseerija vĂ€ljunditest (1 akustiline, 2 visuaalset) koostatakse uus kogum tunnuseid, mida kasutatakse Ă”ppimiseks sĂŒsteemi viimasesetapis. Loodud sĂŒsteemi katsetati SAVEE, Poola ja Serbia emotsionaalse kĂ”neandmebaaside, eNTERFACE’05 ja RML andmebaaside peal. Saadud tulemusednĂ€itavad, et vĂ”rreldes olemasolevatega vĂ”imaldab kĂ€esoleva töö raames loodudsĂŒsteem suuremat tĂ€psust emotsioonide Ă€ratundmisel. Lisaks anname kĂ€esolevastöös ĂŒlevaate kirjanduses vĂ€ljapakutud sĂŒsteemidest, millel on vĂ”imekus tunda Ă€raemotsiooniga seotud ̆zeste. Selle ĂŒlevaate eesmĂ€rgiks on hĂ”lbustada uute uurimissuundade leidmist, mis aitaksid lisada töö raames loodud sĂŒsteemile ̆zestipĂ”hiseemotsioonituvastuse vĂ”imekuse, et veelgi enam tĂ”sta sĂŒsteemi emotsioonide Ă€ratundmise tĂ€psust.Automatic multimodal emotion recognition is a fundamental subject of interest in affective computing. Its main applications are in human-computer interaction. The systems developed for the foregoing purpose consider combinations of different modalities, based on vocal and visual cues. This thesis takes the foregoing modalities into account, in order to develop an automatic multimodal emotion recognition system. More specifically, it takes advantage of the information extracted from speech and face signals. From speech signals, Mel-frequency cepstral coefficients, filter-bank energies and prosodic features are extracted. Moreover, two different strategies are considered for analyzing the facial data. First, facial landmarks' geometric relations, i.e. distances and angles, are computed. Second, we summarize each emotional video into a reduced set of key-frames. Then they are taught to visually discriminate between the emotions. In order to do so, a convolutional neural network is applied to the key-frames summarizing the videos. Afterward, the output confidence values of all the classifiers from both of the modalities are used to define a new feature space. Lastly, the latter values are learned for the final emotion label prediction, in a late fusion. The experiments are conducted on the SAVEE, Polish, Serbian, eNTERFACE'05 and RML datasets. The results show significant performance improvements by the proposed system in comparison to the existing alternatives, defining the current state-of-the-art on all the datasets. Additionally, we provide a review of emotional body gesture recognition systems proposed in the literature. The aim of the foregoing part is to help figure out possible future research directions for enhancing the performance of the proposed system. More clearly, we imply that incorporating data representing gestures, which constitute another major component of the visual modality, can result in a more efficient framework
    corecore