407 research outputs found

    A Short Survey on Perceptual Hash Function

    Get PDF
    The authentication of digital image has become more important as these images can be easily manipulated by using image processing tools leading to various problems such as copyright infringement and hostile tampering to the image contents. It is almost impossible to distinguish subjectively which images are original and which have been manipulated. There are several cryptographic hash functions that map the input data to short binary strings but these traditional cryptographic hash functions is not suitable for image authentication as they are very sensitive to every single bit of input data. When using a cryptographic hash function, the change of even one bit of the original data results in a radically different value. A modified image should be detected as authentic by the hash function and at the same time must be robust against incidental and legitimate modifications on multimedia data. The main aim of this paper is to present a survey of perceptual hash functions for image authentication.Keywords: Hash function, image authentication*Cite as: Arambam Neelima, Kh. Manglem Singh, “A Short Survey on Perceptual Hash Function†ADBU-J.Engg Tech, 1(2014) 0011405(8pp

    Postprocessing for quantum random number generators: entropy evaluation and randomness extraction

    Full text link
    Quantum random-number generators (QRNGs) can offer a means to generate information-theoretically provable random numbers, in principle. In practice, unfortunately, the quantum randomness is inevitably mixed with classical randomness due to classical noises. To distill this quantum randomness, one needs to quantify the randomness of the source and apply a randomness extractor. Here, we propose a generic framework for evaluating quantum randomness of real-life QRNGs by min-entropy, and apply it to two different existing quantum random-number systems in the literature. Moreover, we provide a guideline of QRNG data postprocessing for which we implement two information-theoretically provable randomness extractors: Toeplitz-hashing extractor and Trevisan's extractor.Comment: 13 pages, 2 figure

    MiMC:Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity

    Get PDF
    We explore cryptographic primitives with low multiplicative complexity. This is motivated by recent progress in practical applications of secure multi-party computation (MPC), fully homomorphic encryption (FHE), and zero-knowledge proofs (ZK) where primitives from symmetric cryptography are needed and where linear computations are, compared to non-linear operations, essentially ``free\u27\u27. Starting with the cipher design strategy ``LowMC\u27\u27 from Eurocrypt 2015, a number of bit-oriented proposals have been put forward, focusing on applications where the multiplicative depth of the circuit describing the cipher is the most important optimization goal. Surprisingly, albeit many MPC/FHE/ZK-protocols natively support operations in \GF{p} for large pp, very few primitives, even considering all of symmetric cryptography, natively work in such fields. To that end, our proposal for both block ciphers and cryptographic hash functions is to reconsider and simplify the round function of the Knudsen-Nyberg cipher from 1995. The mapping F(x):=x3F(x) := x^3 is used as the main component there and is also the main component of our family of proposals called ``MiMC\u27\u27. We study various attack vectors for this construction and give a new attack vector that outperforms others in relevant settings. Due to its very low number of multiplications, the design lends itself well to a large class of new applications, especially when the depth does not matter but the total number of multiplications in the circuit dominates all aspects of the implementation. With a number of rounds which we deem secure based on our security analysis, we report on significant performance improvements in a representative use-case involving SNARKs

    Notes on Lattice-Based Cryptography

    Get PDF
    Asymmetrisk kryptering er avhengig av antakelsen om at noen beregningsproblemer er vanskelige å løse. I 1994 viste Peter Shor at de to mest brukte beregningsproblemene, nemlig det diskrete logaritmeproblemet og primtallsfaktorisering, ikke lenger er vanskelige å løse når man bruker en kvantedatamaskin. Siden den gang har forskere jobbet med å finne nye beregningsproblemer som er motstandsdyktige mot kvanteangrep for å erstatte disse to. Gitterbasert kryptografi er forskningsfeltet som bruker kryptografiske primitiver som involverer vanskelige problemer definert på gitter, for eksempel det korteste vektorproblemet og det nærmeste vektorproblemet. NTRU-kryptosystemet, publisert i 1998, var et av de første som ble introdusert på dette feltet. Problemet Learning With Error (LWE) ble introdusert i 2005 av Regev, og det regnes nå som et av de mest lovende beregningsproblemene som snart tas i bruk i stor skala. Å studere vanskelighetsgraden og å finne nye og raskere algoritmer som løser den, ble et ledende forskningstema innen kryptografi. Denne oppgaven inkluderer følgende bidrag til feltet: - En ikke-triviell reduksjon av Mersenne Low Hamming Combination Search Problem, det underliggende problemet med et NTRU-lignende kryptosystem, til Integer Linear Programming (ILP). Særlig finner vi en familie av svake nøkler. - En konkret sikkerhetsanalyse av Integer-RLWE, en vanskelig beregningsproblemvariant av LWE, introdusert av Gu Chunsheng. Vi formaliserer et meet-in-the-middle og et gitterbasert angrep for denne saken, og vi utnytter en svakhet ved parametervalget gitt av Gu, for å bygge et forbedret gitterbasert angrep. - En forbedring av Blum-Kalai-Wasserman-algoritmen for å løse LWE. Mer spesifikt, introduserer vi et nytt reduksjonstrinn og en ny gjetteprosedyre til algoritmen. Disse tillot oss å utvikle to implementeringer av algoritmen, som er i stand til å løse relativt store LWE-forekomster. Mens den første effektivt bare bruker RAM-minne og er fullt parallelliserbar, utnytter den andre en kombinasjon av RAM og disklagring for å overvinne minnebegrensningene gitt av RAM. - Vi fyller et tomrom i paringsbasert kryptografi. Dette ved å gi konkrete formler for å beregne hash-funksjon til G2, den andre gruppen i paringsdomenet, for Barreto-Lynn-Scott-familien av paringsvennlige elliptiske kurver.Public-key Cryptography relies on the assumption that some computational problems are hard to solve. In 1994, Peter Shor showed that the two most used computational problems, namely the Discrete Logarithm Problem and the Integer Factoring Problem, are not hard to solve anymore when using a quantum computer. Since then, researchers have worked on finding new computational problems that are resistant to quantum attacks to replace these two. Lattice-based Cryptography is the research field that employs cryptographic primitives involving hard problems defined on lattices, such as the Shortest Vector Problem and the Closest Vector Problem. The NTRU cryptosystem, published in 1998, was one of the first to be introduced in this field. The Learning With Error (LWE) problem was introduced in 2005 by Regev, and it is now considered one of the most promising computational problems to be employed on a large scale in the near future. Studying its hardness and finding new and faster algorithms that solve it became a leading research topic in Cryptology. This thesis includes the following contributions to the field: - A non-trivial reduction of the Mersenne Low Hamming Combination Search Problem, the underlying problem of an NTRU-like cryptosystem, to Integer Linear Programming (ILP). In particular, we find a family of weak keys. - A concrete security analysis of the Integer-RLWE, a hard computational problem variant of LWE introduced by Gu Chunsheng. We formalize a meet-in-the-middle attack and a lattice-based attack for this case, and we exploit a weakness of the parameters choice given by Gu to build an improved lattice-based attack. - An improvement of the Blum-Kalai-Wasserman algorithm to solve LWE. In particular, we introduce a new reduction step and a new guessing procedure to the algorithm. These allowed us to develop two implementations of the algorithm that are able to solve relatively large LWE instances. While the first one efficiently uses only RAM memory and is fully parallelizable, the second one exploits a combination of RAM and disk storage to overcome the memory limitations given by the RAM. - We fill a gap in Pairing-based Cryptography by providing concrete formulas to compute hash-maps to G2, the second group in the pairing domain, for the Barreto-Lynn-Scott family of pairing-friendly elliptic curves.Doktorgradsavhandlin

    Dynamic Multi-Factor Security

    Get PDF
    This thesis identifies the current limitations of electronic remote authentication systems and presents a new remote authentication system that addresses these limitations. Examples of these limitations can be easily observed in everyday life. Some more common examples include: credit card theft, identity theft, insurance fraud and hacking of private computer networks. Our proposed solution includes a multi-factor protocol which has two key features. First, it dynamically updates private ID numbers such that no two iterations of the authentication protocol use the same set if private IDs for each involved party, using a True Random Number Generator (TRNG). This prevents any unauthorized access of private information, and even if this information is compromised, the authentication protocol is not compromised, since the subsequent iteration of authentication uses new IDs. Second, the protocol uses multiple authentication factors (two in our implementation), to further enhance security. These additional authentication factors are also dynamically updated after each iteration of the protocol. The protocol was implemented in a system which simulates a credit card transaction, highlighting the usefulness of our protocol in real world remote authentication. We expect this new electronic remote authentication system to solve many of the current failings of modern electronic authentication schemes
    • …
    corecore