108 research outputs found

    A Unified End-to-End Communication Paradigm for Heterogeneous Networks

    Get PDF
    The aim of this thesis research is to develop a unified communication paradigm that provides an end-to-end bursting model across heterogeneous realms. This model generates end-to-end bursts, thereby eliminating edge node burst assembly and its effect on TCP performance. Simulation models are developed in ns-2 to validate this work by comparing it with edge burst assembly on OBS networks. Analysis shows improved end-to-end performance for a variety of burst sizes, timeouts, and other network parameters

    Optical Switching for Scalable Data Centre Networks

    Get PDF
    This thesis explores the use of wavelength tuneable transmitters and control systems within the context of scalable, optically switched data centre networks. Modern data centres require innovative networking solutions to meet their growing power, bandwidth, and scalability requirements. Wavelength routed optical burst switching (WROBS) can meet these demands by applying agile wavelength tuneable transmitters at the edge of a passive network fabric. Through experimental investigation of an example WROBS network, the transmitter is shown to determine system performance, and must support ultra-fast switching as well as power efficient transmission. This thesis describes an intelligent optical transmitter capable of wideband sub-nanosecond wavelength switching and low-loss modulation. A regression optimiser is introduced that applies frequency-domain feedback to automatically enable fast tuneable laser reconfiguration. Through simulation and experiment, the optimised laser is shown to support 122×50 GHz channels, switching in less than 10 ns. The laser is deployed as a component within a new wavelength tuneable source (WTS) composed of two time-interleaved tuneable lasers and two semiconductor optical amplifiers. Switching over 6.05 THz is demonstrated, with stable switch times of 547 ps, a record result. The WTS scales well in terms of chip-space and bandwidth, constituting the first demonstration of scalable, sub-nanosecond optical switching. The power efficiency of the intelligent optical transmitter is further improved by introduction of a novel low-loss split-carrier modulator. The design is evaluated using 112 Gb/s/λ intensity modulated, direct-detection signals and a single-ended photodiode receiver. The split-carrier transmitter is shown to achieve hard decision forward error correction ready performance after 2 km of transmission using a laser output power of just 0 dBm; a 5.2 dB improvement over the conventional transmitter. The results achieved in the course of this research allow for ultra-fast, wideband, intelligent optical transmitters that can be applied in the design of all-optical data centres for power efficient, scalable networking

    Packet Loss in Terrestrial Wireless and Hybrid Networks

    Get PDF
    The presence of both a geostationary satellite link and a terrestrial local wireless link on the same path of a given network connection is becoming increasingly common, thanks to the popularity of the IEEE 802.11 protocol. The most common situation where a hybrid network comes into play is having a Wi-Fi link at the network edge and the satellite link somewhere in the network core. Example of scenarios where this can happen are ships or airplanes where Internet connection on board is provided through a Wi-Fi access point and a satellite link with a geostationary satellite; a small office located in remote or isolated area without cabled Internet access; a rescue team using a mobile ad hoc Wi-Fi network connected to the Internet or to a command centre through a mobile gateway using a satellite link. The serialisation of terrestrial and satellite wireless links is problematic from the point of view of a number of applications, be they based on video streaming, interactive audio or TCP. The reason is the combination of high latency, caused by the geostationary satellite link, and frequent, correlated packet losses caused by the local wireless terrestrial link. In fact, GEO satellites are placed in equatorial orbit at 36,000 km altitude, which takes the radio signal about 250 ms to travel up and down. Satellite systems exhibit low packet loss most of the time, with typical project constraints of 10−8 bit error rate 99% of the time, which translates into a packet error rate of 10−4, except for a few days a year. Wi-Fi links, on the other hand, have quite different characteristics. While the delay introduced by the MAC level is in the order of the milliseconds, and is consequently too small to affect most applications, its packet loss characteristics are generally far from negligible. In fact, multipath fading, interference and collisions affect most environments, causing correlated packet losses: this means that often more than one packet at a time is lost for a single fading even

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT

    Orthogonal frequency division multiplexing for next generation optical networks

    Get PDF
    Next generation optical networks will be required to provide increased data throughput on a greater number of optical channels and will also have to facilitate network flexibility in order to adapt to dynamic traffic patterns. Furthermore, the potentially wide deployment of optical Access and Metropolitan networks in particular require that these challenges are met in a cost effect manner. This thesis examines the use of Orthogonal Frequency Division Multiplexing (OFDM) as a means of helping to meet these requirements for next generation optical systems with a high market volume. OFDM is a multi–carrier modulation technique which exhibits high spectral efficiency and a tolerance to chromatic dispersion making it an excellent candidate for use in next generation optical networks. The work presented in this thesis shows how the use of OFDM in conjunction with novel laser devices and direct detection can be used to construct cost effective, low footprint optical systems. These systems are capable of providing >10Gb/s per optical channel and are suitable for implementation as optical access networks. Furthermore, OFDM is shown to be a realistic candidate for use in an optical switching environment where external modulation is employed and, as such, can be considered for use in next generation metropolitan networks

    Transport Control Protocol (TCP) over Optical Burst Switched Networks

    Get PDF
    Transport Control Protocol (TCP) is the dominant protocol in modern communication networks, in which the issues of reliability, flow, and congestion control must be handled efficiently. This thesis studies the impact of the next-generation bufferless optical burst-switched (OBS) networks on the performance of TCP congestion-control implementations (i.e., dropping-based, explicit-notification-based, and delay-based). The burst contention phenomenon caused by the buffer-less nature of OBS occurs randomly and has a negative impact on dropping-based TCP since it causes a false indication of network congestion that leads to improper reaction on a burst drop event. In this thesis we study the impact of these random burst losses on dropping-based TCP throughput. We introduce a novel congestion control scheme for TCP over OBS networks, called Statistical Additive Increase Multiplicative Decrease (SAIMD). SAIMD maintains and analyzes a number of previous round trip times (RTTs) at the TCP senders in order to identify the confidence with which a packet-loss event is due to network congestion. The confidence is derived by positioning short-term RTT in the spectrum of long-term historical RTTs. The derived confidence corresponding to the packet loss is then taken in to account by the policy developed for TCP congestion-window adjustment. For explicit-notification TCP, we propose a new TCP implementation over OBS networks, called TCP with Explicit Burst Loss Contention Notification (TCP-BCL). We examine the throughput performance of a number of representative TCP implementations over OBS networks, and analyze the TCP performance degradation due to the misinterpretation of timeout and packet-loss events. We also demonstrate that the proposed TCP-BCL scheme can counter the negative effect of OBS burst losses and is superior to conventional TCP architectures in OBS networks. For delay-based TCP, we observe that this type of TCP implementation cannot detect network congestion when deployed over typical OBS networks since RTT fluctuations are minor. Also, delay-based TCP can suffer from falsely detecting network congestion when the underlying OBS network provides burst retransmission and/or deflection. Due to the fact that burst retransmission and deflection schemes introduce additional delays for bursts that are retransmitted or deflected, TCP cannot determine whether this sudden delay is due to network congestion or simply to burst recovery at the OBS layer. In this thesis we study the behaviour of delay-based TCP Vegas over OBS networks, and propose a version of threshold-based TCP Vegas that is suitable for the characteristics of OBS networks. The threshold-based TCP Vegas is able to distinguish increases in packet delay due to network congestion from burst contention at low traffic loads. The evolution of OBS technology is highly coupled with its ability to support upper-layer applications. Without fully understanding the burst transmission behaviour and the associated impact on the TCP congestion-control mechanism, it will be difficult to exploit the advantages of OBS networks fully

    Label-controlled optical switching nodes

    Get PDF
    Optical networks are evolving from initially static optical circuits and subsequently optical circuit switching towards optical packet switching in order to take advan- tage of the high transport capacity made available by WDM systems in a more °exible and e±cient way. Optically labeling of packets and routing the packets's payload optically under control of its label allows the network nodes to route and forward IP data without having to process the payload, thus keeping it in the optical domain; this is a promising solution to avoid electronic bottlenecks in routers. All-optical label switching can therefore be used to route and forward packets independent of their length and payload bitrate. Several optical signal labeling techniques have been proposed in previous re- search reported in literature; orthogonal labeling and time-serial labeling have been studied in this thesis. This thesis studies two orthogonal modulation label- ing techniques: one based on FSK labels with an IM payload, and another one on SCM labeling for a DPSK modulated payload. A time-serial labeling method based on IM labels with IM or DPSK payload is also presented and studied. The ¯rst two techniques assume electronic processing of the labels in the node, and hence assume that labels can be transmitted at a much lower bitrate than the payload data rate. The third technique assumes all-optical signal processing in the nodes, capable of handling a label at the same bitrate or slightly lower than the payload data. Labels at low bitrate in comparison with the payload bitrate are desirable in systems where the label processing will be conducted in the electrical domain, while labels at the same bitrate as the payload can be used in systems where the processing is conducted in the optical domain, exploiting all-optical processing techniques. These three techniques have been chosen because they are compatible with the existing networks, since the modulation format, bitrates, transmission properties, and other features of the signals are similar to the ones used for commercially available applications. Thus, they can be considered important candidates for migration scenarios from optical circuit switching towards optical burst switching networking. Orthogonal labeling based on FSK/IM is a promising scheme for implementing the labeling of optical signals, and it is the technology of choice in the STOLAS project. This technique o®ers advantageous features such as a relaxed timing de- lineation between payload and label, and ease of label erasure and re-writing of new labels. By using wavelength-agile tunable laser sources with FSK modula- tion capability, wavelength converters, and passive wavelength routing elements, a scalable modular label-controlled router featuring high reliability can be built. In this thesis, several aspects of the physical parameters of an FSK/IM labeling scheme within a routing node have been studied and presented. Optical ¯ltering requires special care, since the combined FSK/IM scheme has a broader spectrum than that of pure intensity modulated signals. The requirements on the limited extinction ratio for the IM signal can be relaxed at low bitrates of the label signal or, alternatively, by introducing data encoding. Optical labeling by using FSK/IM represents a simple and attractive way of implementing hybrid optical circuit and burst switching in optical networks. Architecturally, similar advantages can be mentioned for the second orthogo- nal labeling technique studied in this thesis, based on SCM labels and a DPSK payload. In-band subcarriers carrying low bitrate labels located at a frequency equal to half the bitrate of the payload signal can be inserted introducing only low power penalties. Wavelength conversion can be implemented by using passive highly nonlinear ¯bers and exploiting the four-wave mixing e®ect. This thesis also studies the design of two functional blocks of an all-optical core node proposed in the LASAGNE project, namely the all-optical label and payload separator and the wavelength converter unit for a time-serial labeling scheme. The label and payload processor can be realized exploiting nonlinear e®ects in SOAs. An implementation using polarization division multiplexing to transport the external control light for an IM/IM time-serial scheme was demon- strated. Label and payload processors with self-contained control signals were also demonstrated, either using a DPSK signal to simultaneously transport the payload data and the control signal or inserting a CW dummy in between the label and the payload, which were based on IM-RZ format. A study on single- and multi- wavelength conversion based on FWM in a HNLF was presented. This approach allows transparent wavelength conversion (independent of the data format used) at high bitrates (the nonlinear e®ects in a ¯ber are obtained at ultrafast speeds). The labeling techniques explored have indicated a viable way of migration towards optical burst packet switched networks while signi¯cantly improving the throughput of the routing nodes

    Transport layer protocol design over flow-switched data networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 135-136).In this work, we explore transport layer protocol design for an optical flow-switched network. The objective of the protocol design is to guarantee the reliable delivery of data files over an all-optical end-to- end flow-switched network which is modeled as a burst-error channel. We observe that Transport Control Protocol (TCP) is not best suited for Optical Flow-Switching (OFS). Specifically, flow control and fair resource allocation through windowing in TCP are unnecessary in an OFS network. Moreover TCP has poor throughput and delay performance at high transfer rates due to window flow control and window closing with missing or dropped packets. In OFS, flows are scheduled and congestion control is performed by a scheduling algorithm. Thus, we focus on defining a more efficient transport protocol for optical flow-switched networks that is neither a modification of TCP nor derived from TCP. The main contribution of this work is to optimize the throughput and delay performance of OFS using file segmentation and reassembly, forward error-correction (FEC), and frame retransmission. We analyze the throughput and delay performance of four example transport layer protocols: the Simple Transport Protocol (STP), the Simple Transport Protocol with Interleaving (STPI), the Transport Protocol with Framing (TPF) and the Transport Protocol with Framing and Interleaving (TPFI). First, we show that a transport layer protocol without file segmentation and without interleaving and FEC (STP) results in poor throughput and delay performance and is not well suited for OFS. Instead, we found that interleaving across a large file (STPI) results in the best theoretical delay performance, though the large code lengths and interleaver sizes in this scheme will be hard to implement. Also, in the unlikely case that a file experiences an uncorrectable error, STPI requires extra network resources equal to that of an entire transaction for file retransmission and adds to the delay of the transaction significantly. For the above reason, we propose the segmentation of a file into large frames combined with FEC, interleaving, and retransmission of erroneous frames (TPFI) as the protocol of choice for an OFS network. In TPFI, interleaving combined with FEC and frame retransmission allows a file to be segmented into large frames (>100 Mbits). In addition, TPFI also allows for fewer processing and file segmentation and reassembly overhead compared with a transport layer protocol that does not include interleaving and FEC (TPF).by Henna Priscilla Huang.S.M
    corecore