112 research outputs found

    Switch configuration for migration to optical fiber network

    Get PDF
    The purpose is to investigate the migration of an Ethernet LAN segment to fiber optics. At the present time it is proposed to support a Fiber Distributed Data Interface (FDDI) backbone and to upgrade the VAX cluster to fiber optic interface. Possibly some workstations will have an FDDI interface. The remaining stations on the Ethernet LAN will be segmented. The rationale for migrating from the present Ethernet configuration to a fiber optic backbone is due to the increase in the number of workstations and the movement of applications to a windowing environment, extensive document transfers, and compute intensive applications

    Optical fibre local area networks

    Get PDF

    Fiber distributed data interface: system level description

    Get PDF

    Data communication network at the ASRM facility

    Get PDF
    The main objective of the report is to present the overall communication network structure for the Advanced Solid Rocket Motor (ASRM) facility being built at Yellow Creek near Iuka, Mississippi. This report is compiled using information received from NASA/MSFC, LMSC, AAD, and RUST Inc. As per the information gathered, the overall network structure will have one logical FDDI ring acting as a backbone for the whole complex. The buildings will be grouped into two categories viz. manufacturing critical and manufacturing non-critical. The manufacturing critical buildings will be connected via FDDI to the Operational Information System (OIS) in the main computing center in B 1000. The manufacturing non-critical buildings will be connected by 10BASE-FL to the Business Information System (BIS) in the main computing center. The workcells will be connected to the Area Supervisory Computers (ASCs) through the nearest manufacturing critical hub and one of the OIS hubs. The network structure described in this report will be the basis for simulations to be carried out next year. The Comdisco's Block Oriented Network Simulator (BONeS) will be used for the network simulation. The main aim of the simulations will be to evaluate the loading of the OIS, the BIS, the ASCs, and the network links by the traffic generated by the workstations and workcells throughout the site

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS

    Application of new electro-optic technology to Space Station Freedom data management system

    Get PDF
    A low risk design methodology to permit the local bus structures to support increased data carrying capacities and to speed messages and data flow between nodes or stations on the Space Station Freedom Data Management System in anticipation of growing requirements was evaluated and recommended. The recommended design employs a collateral fiber optic technique that follows a NATO avionic standard that is developed, tested, and available. Application of this process will permit a potential 25 fold increase in data transfer performance on the local wire bus network with a fiber optic network, maintaining the functionality of the low-speed bus and supporting all of the redundant transmission and fault detection capabilities designed into the existing system. The application of wavelength division multiplexing (WDM) technology to both the local data bus and global data bus segments of the Data Management System to support anticipated additional highspeed data transmission requirements was also examined. Techniques were examined to provide a dual wavelength implementation of the fiber optic collateral networks. This dual wavelength implementation would permit each local bus to support two simultaneous high-speed transfers on the same fiber optic bus structure and operate within the limits of the existing protocol standard. A second WDM study examined the use of spectral sliced technology to provide a fourfold increase in the Fiber Distributed Data Interface (FDDI) global bus networks without requiring modifications to the existing installed cable plant. Computer simulations presented indicated that this data rate improvement can be achieved with commercially available optical components

    Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    Get PDF
    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined

    Spacelab system analysis: A study of communications systems for advanced launch systems

    Get PDF
    An analysis of the required performance of internal avionics data bases for future launch vehicles is presented. Suitable local area networks that can service these requirements are determined
    • …
    corecore