83 research outputs found

    FDD massive MIMO channel spatial covariance conversion using projection methods

    Full text link
    Knowledge of second-order statistics of channels (e.g. in the form of covariance matrices) is crucial for the acquisition of downlink channel state information (CSI) in massive MIMO systems operating in the frequency division duplexing (FDD) mode. Current MIMO systems usually obtain downlink covariance information via feedback of the estimated covariance matrix from the user equipment (UE), but in the massive MIMO regime this approach is infeasible because of the unacceptably high training overhead. This paper considers instead the problem of estimating the downlink channel covariance from uplink measurements. We propose two variants of an algorithm based on projection methods in an infinite-dimensional Hilbert space that exploit channel reciprocity properties in the angular domain. The proposed schemes are evaluated via Monte Carlo simulations, and they are shown to outperform current state-of-the art solutions in terms of accuracy and complexity, for typical array geometries and duplex gaps.Comment: Paper accepted on 29/01/2018 for presentation at ICASSP 201

    Downlink channel spatial covariance estimation in realistic FDD massive MIMO systems

    Full text link
    The knowledge of the downlink (DL) channel spatial covariance matrix at the BS is of fundamental importance for large-scale array systems operating in frequency division duplexing (FDD) mode. In particular, this knowledge plays a key role in the DL channel state information (CSI) acquisition. In the massive MIMO regime, traditional schemes based on DL pilots are severely limited by the covariance feedback and the DL training overhead. To overcome this problem, many authors have proposed to obtain an estimate of the DL spatial covariance based on uplink (UL) measurements. However, many of these approaches rely on simple channel models, and they are difficult to extend to more complex models that take into account important effects of propagation in 3D environments and of dual-polarized antenna arrays. In this study we propose a novel technique that takes into account the aforementioned effects, in compliance with the requirements of modern 4G and 5G system designs. Numerical simulations show the effectiveness of our approach.Comment: [v2] is the version accepted at GlobalSIP 2018. Only minor changes mainly in the introductio

    Sparse-aware approach for covariance conversion in FDD systems

    Get PDF
    This paper proposes a practical way to solve the Uplink-Downlink Covariance Conversion (UDCC) problem in a Frequency Division Duplex (FDD) communication system. The UDCC problem consists in the estimation of the Downlink (DL) spatial covariance matrix from the prior knowledge of the Uplink (UL) spatial covariance matrix without the need of a feedback transmission from the User Equipment (UE) to the Base Station (BS). Estimating the DL sample spatial covariance matrix is unfeasible in current massive Multiple-Input Multiple-Output (MIMO) deployments in frequency selective or fast fading channels due to the required large training overhead. Our method is based on the application of sparse filtering ideas to the estimation of a quantized version of the so-called Angular Power Spectrum (APS), being the common factor between the UL and DL spatial channel covariance matrices.This work has been supported by the Spanish Ministry of Science and Innovation through project RODIN (PID2019-105717RB-C22 / AEI / 10.13039/501100011033) and by the Catalan Government (AGAUR) under grant 2017 SGR 578.Peer ReviewedPostprint (author's final draft
    • …
    corecore