279 research outputs found

    Asynchronous Visualization of Spatiotemporal Information for Multiple Moving Targets

    Get PDF
    In the modern information age, the quantity and complexity of spatiotemporal data is increasing both rapidly and continuously. Sensor systems with multiple feeds that gather multidimensional spatiotemporal data will result in information clusters and overload, as well as a high cognitive load for users of these systems. To meet future safety-critical situations and enhance time-critical decision-making missions in dynamic environments, and to support the easy and effective managing, browsing, and searching of spatiotemporal data in a dynamic environment, we propose an asynchronous, scalable, and comprehensive spatiotemporal data organization, display, and interaction method that allows operators to navigate through spatiotemporal information rather than through the environments being examined, and to maintain all necessary global and local situation awareness. To empirically prove the viability of our approach, we developed the Event-Lens system, which generates asynchronous prioritized images to provide the operator with a manageable, comprehensive view of the information that is collected by multiple sensors. The user study and interaction mode experiments were designed and conducted. The Event-Lens system was discovered to have a consistent advantage in multiple moving-target marking-task performance measures. It was also found that participants’ attentional control, spatial ability, and action video gaming experience affected their overall performance

    A Frontier Based Multi-Robot Approach for Coverage of Unknown Environments

    Get PDF
    With the advent of latest technical advancements in the field of robotics, a stage has arrived where autonomous robots are expected to help humans in tasks that are either dangerous or too monotonous such as mining, search and rescue, floor cleaning. All these problems are derivatives of coverage problem wherein the motto is complete coverage of the environment in a time effective manner. Most of the coverage methods developed till date have access to the map prior to exploration and only few of them made use of multiple robots. In view of the drawbacks of the existing approaches, we developed a frontier based multi robot approach for coverage of unknown environments where map building and exploration is done simultaneously. Individual maps from the robots are merged to form a global map. Frontiers which are the boundaries between explored and unexplored areas are identified and the robots are navigated toward frontiers using the proposed exploration strategy. Robot operating System (ROS) is used for implementation and Stage is used for simulating robots and their environments. Simulation results are obtained for proposed approach and are compared with various existing exploration strategies

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    Characterisation of a nuclear cave environment utilising an autonomous swarm of heterogeneous robots

    Get PDF
    As nuclear facilities come to the end of their operational lifetime, safe decommissioning becomes a more prevalent issue. In many such facilities there exist ‘nuclear caves’. These caves constitute areas that may have been entered infrequently, or even not at all, since the construction of the facility. Due to this, the topography and nature of the contents of these nuclear caves may be unknown in a number of critical aspects, such as the location of dangerous substances or significant physical blockages to movement around the cave. In order to aid safe decommissioning, autonomous robotic systems capable of characterising nuclear cave environments are desired. The research put forward in this thesis seeks to answer the question: is it possible to utilise a heterogeneous swarm of autonomous robots for the remote characterisation of a nuclear cave environment? This is achieved through examination of the three key components comprising a heterogeneous swarm: sensing, locomotion and control. It will be shown that a heterogeneous swarm is not only capable of performing this task, it is preferable to a homogeneous swarm. This is due to the increased sensory and locomotive capabilities, coupled with more efficient explorational prowess when compared to a homogeneous swarm

    Multi-Robot Systems: Challenges, Trends and Applications

    Get PDF
    This book is a printed edition of the Special Issue entitled “Multi-Robot Systems: Challenges, Trends, and Applications” that was published in Applied Sciences. This Special Issue collected seventeen high-quality papers that discuss the main challenges of multi-robot systems, present the trends to address these issues, and report various relevant applications. Some of the topics addressed by these papers are robot swarms, mission planning, robot teaming, machine learning, immersive technologies, search and rescue, and social robotics

    WSR: A WiFi Sensor for Collaborative Robotics

    Full text link
    In this paper we derive a new capability for robots to measure relative direction, or Angle-of-Arrival (AOA), to other robots operating in non-line-of-sight and unmapped environments with occlusions, without requiring external infrastructure. We do so by capturing all of the paths that a WiFi signal traverses as it travels from a transmitting to a receiving robot, which we term an AOA profile. The key intuition is to "emulate antenna arrays in the air" as the robots move in 3D space, a method akin to Synthetic Aperture Radar (SAR). The main contributions include development of i) a framework to accommodate arbitrary 3D trajectories, as well as continuous mobility all robots, while computing AOA profiles and ii) an accompanying analysis that provides a lower bound on variance of AOA estimation as a function of robot trajectory geometry based on the Cramer Rao Bound. This is a critical distinction with previous work on SAR that restricts robot mobility to prescribed motion patterns, does not generalize to 3D space, and/or requires transmitting robots to be static during data acquisition periods. Our method results in more accurate AOA profiles and thus better AOA estimation, and formally characterizes this observation as the informativeness of the trajectory; a computable quantity for which we derive a closed form. All theoretical developments are substantiated by extensive simulation and hardware experiments. We also show that our formulation can be used with an off-the-shelf trajectory estimation sensor. Finally, we demonstrate the performance of our system on a multi-robot dynamic rendezvous task.Comment: 28 pages, 25 figures, *co-primary author

    Distributed Systems and Mobile Computing

    Get PDF
    The book is about Distributed Systems and Mobile Computing. This is a branch of Computer Science devoted to the study of systems whose components are in different physical locations and have limited communication capabilities. Such components may be static, often organized in a network, or may be able to move in a discrete or continuous environment. The theoretical study of such systems has applications ranging from swarms of mobile robots (e.g., drones) to sensor networks, autonomous intelligent vehicles, the Internet of Things, and crawlers on the Web. The book includes five articles. Two of them are about networks: the first one studies the formation of networks by agents that interact randomly and have the ability to form connections; the second one is a study of clustering models and algorithms. The three remaining articles are concerned with autonomous mobile robots operating in continuous space. One article studies the classical gathering problem, where all robots have to reach a common location, and proposes a fast algorithm for robots that are endowed with a compass but have limited visibility. The last two articles deal with the evacuations problem, where two robots have to locate an exit point and evacuate a region in the shortest possible time

    A Decentralized Architecture for Active Sensor Networks

    Get PDF
    This thesis is concerned with the Distributed Information Gathering (DIG) problem in which a Sensor Network is tasked with building a common representation of environment. The problem is motivated by the advantages offered by distributed autonomous sensing systems and the challenges they present. The focus of this study is on Macro Sensor Networks, characterized by platform mobility, heterogeneous teams, and long mission duration. The system under consideration may consist of an arbitrary number of mobile autonomous robots, stationary sensor platforms, and human operators, all linked in a network. This work describes a comprehensive framework called Active Sensor Network (ASN) which addresses the tasks of information fusion, decistion making, system configuration, and user interaction. The main design objectives are scalability with the number of robotic platforms, maximum flexibility in implementation and deployment, and robustness to component and communication failure. The framework is described from three complementary points of view: architecture, algorithms, and implementation. The main contribution of this thesis is the development of the ASN architecture. Its design follows three guiding principles: decentralization, modularity, and locality of interactions. These principles are applied to all aspects of the architecture and the framework in general. To achieve flexibility, the design approach emphasizes interactions between components rather than the definition of the components themselves. The architecture specifies a small set of interfaces sufficient to implement a wide range of information gathering systems. In the area of algorithms, this thesis builds on the earlier work on Decentralized Data Fusion (DDF) and its extension to information-theoretic decistion making. It presents the Bayesian Decentralized Data Fusion (BDDF) algorithm formulated for environment features represented by a general probability density function. Several specific representations are also considered: Gaussian, discrete, and the Certainty Grid map. Well known algorithms for these representations are shown to implement various aspects of the Bayesian framework. As part of the ASN implementation, a practical indoor sensor network has been developed and tested. Two series of experiments were conducted, utilizing two types of environment representation: 1) point features with Gaussian position uncertainty and 2) Certainty Grid maps. The network was operational for several days at a time, with individual platforms coming on and off-line. On several occasions, the network consisted of 39 software components. The lessons learned during the system's development may be applicable to other heterogeneous distributed systems with data-intensive algorithms
    corecore