3 research outputs found

    A High-Fidelity Open Embodied Avatar with Lip Syncing and Expression Capabilities

    Full text link
    Embodied avatars as virtual agents have many applications and provide benefits over disembodied agents, allowing non-verbal social and interactional cues to be leveraged, in a similar manner to how humans interact with each other. We present an open embodied avatar built upon the Unreal Engine that can be controlled via a simple python programming interface. The avatar has lip syncing (phoneme control), head gesture and facial expression (using either facial action units or cardinal emotion categories) capabilities. We release code and models to illustrate how the avatar can be controlled like a puppet or used to create a simple conversational agent using public application programming interfaces (APIs). GITHUB link: https://github.com/danmcduff/AvatarSimComment: International Conference on Multimodal Interaction (ICMI 2019

    Simulating dynamic facial expressions of pain from visuo-haptic interactions with a robotic patient

    Get PDF
    Medical training simulators can provide a safe and controlled environment for medical students to practice their physical examination skills. An important source of information for physicians is the visual feedback of involuntary pain facial expressions in response to physical palpation on an affected area of a patient. However, most existing robotic medical training simulators that can capture physical examination behaviours in real-time cannot display facial expressions and comprise a limited range of patient identities in terms of ethnicity and gender. Together, these limitations restrict the utility of medical training simulators because they do not provide medical students with a representative sample of pain facial expressions and face identities, which could result in biased practices. Further, these limitations restrict the utility of such medical simulators to detect and correct early signs of bias in medical training. Here, for the first time, we present a robotic system that can simulate facial expressions of pain in response to palpations, displayed on a range of patient face identities. We use the unique approach of modelling dynamic pain facial expressions using a data-driven perception-based psychophysical method combined with the visuo-haptic inputs of users performing palpations on a robot medical simulator. Specifically, participants performed palpation actions on the abdomen phantom of a simulated patient, which triggered the real-time display of six pain-related facial Action Units (AUs) on a robotic face (MorphFace), each controlled by two pseudo randomly generated transient parameters: rate of change β and activation delay τ. Participants then rated the appropriateness of the facial expression displayed in response to their palpations on a 4-point scale from “strongly disagree” to “strongly agree”. Each participant (n=16, 4 Asian females, 4 Asian males, 4 White females and 4 White males) performed 200 palpation trials on 4 patient identities (Black female, Black male, White female and White male) simulated using MorphFace. Results showed facial expressions rated as most appropriate by all participants comprise a higher rate of change and shorter delay from upper face AUs (around the eyes) to those in the lower face (around the mouth). In contrast, we found that transient parameter values of most appropriate-rated pain facial expressions, palpation forces, and delays between palpation actions varied across participant-simulated patient pairs according to gender and ethnicity. These findings suggest that gender and ethnicity biases affect palpation strategies and the perception of pain facial expressions displayed on MorphFace. We anticipate that our approach will be used to generate physical examination models with diverse patient demographics to reduce erroneous judgments in medical students, and provide focused training to address these errors

    Facial Expression Rendering in Medical Training Simulators: Current Status and Future Directions

    Get PDF
    Recent technological advances in robotic sensing and actuation methods have prompted development of a range of new medical training simulators with multiple feedback modalities. Learning to interpret facial expressions of a patient during medical examinations or procedures has been one of the key focus areas in medical training. This paper reviews facial expression rendering systems in medical training simulators that have been reported to date. Facial expression rendering approaches in other domains are also summarized to incorporate the knowledge from those works into developing systems for medical training simulators. Classifications and comparisons of medical training simulators with facial expression rendering are presented, and important design features, merits and limitations are outlined. Medical educators, students and developers are identified as the three key stakeholders involved with these systems and their considerations and needs are presented. Physical-virtual (hybrid) approaches provide multimodal feedback, present accurate facial expression rendering, and can simulate patients of different age, gender and ethnicity group; makes it more versatile than virtual and physical systems. The overall findings of this review and proposed future directions are beneficial to researchers interested in initiating or developing such facial expression rendering systems in medical training simulators.This work was supported by the Robopatient project funded by the EPSRC Grant No EP/T00519X/
    corecore