3 research outputs found

    Swarm intelligence–based energy efficient clustering with multihop routing protocol for sustainable wireless sensor networks

    Get PDF
    © The Author(s) 2020. Wireless sensor network is a hot research topic with massive applications in different domains. Generally, wireless sensor network comprises hundreds to thousands of sensor nodes, which communicate with one another by the use of radio signals. Some of the challenges exist in the design of wireless sensor network are restricted computation power, storage, battery and transmission bandwidth. To resolve these issues, clustering and routing processes have been presented. Clustering and routing processes are considered as an optimization problem in wireless sensor network which can be resolved by the use of swarm intelligence–based approaches. This article presents a novel swarm intelligence–based clustering and multihop routing protocol for wireless sensor network. Initially, improved particle swarm optimization technique is applied for choosing the cluster heads and organizes the clusters proficiently. Then, the grey wolf optimization algorithm–based routing process takes place to select the optimal paths in the network. The presented improved particle swarm optimization–grey wolf optimization approach incorporates the benefits of both the clustering and routing processes which leads to maximum energy efficiency and network lifetime. The proposed model is simulated under an extension set of experimentation, and the results are validated under several measures. The obtained experimental outcome demonstrated the superior characteristics of the improved particle swarm optimization–grey wolf optimization technique under all the test cases

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio
    corecore