96 research outputs found

    Inferior Occipital Gyrus Is Organized along Common Gradients of Spatial and Face-Part Selectivity

    Get PDF
    The ventral visual stream of the human brain is subdivided into patches with categorical stimulus preferences, like faces or scenes. However, the functional organization within these areas is less clear. Here, we used functional magnetic resonance imaging and vertex-wise tuning models to independently probe spatial and face-part preferences in the inferior occipital gyrus (IOG) of healthy adult males and females. The majority of responses were well explained by Gaussian population tuning curves for both retinotopic location and the preferred relative position within a face. Parameter maps revealed a common gradient of spatial and face-part selectivity, with the width of tuning curves drastically increasing from posterior to anterior IOG. Tuning peaks clustered more idiosyncratically but were also correlated across maps of visual and face space. Preferences for the upper visual field went along with significantly increased coverage of the upper half of the face, matching recently discovered biases in human perception. Our findings reveal a broad range of neural face-part selectivity in IOG, ranging from narrow to “holistic.” IOG is functionally organized along this gradient, which in turn is correlated with retinotopy

    Intrasession and Intersession Reproducibility of Artificial Scotoma pRF Mapping Results at Ultra- High Fields

    Get PDF
    Published online September 6, 2022.Functional magnetic resonance imaging (fMRI) combined with population receptive field (pRF) mapping allows for associating positions on the visual cortex to areas on the visual field. Apart from applications in healthy subjects, this method can also be used to examine dysfunctions in patients suffering from partial visual field losses. While such objective measurement of visual deficits (scotoma) is of great importance for, e.g., longitudinal studies addressing treatment effects, it requires a thorough assessment of accuracy and reproducibility of the results obtained. In this study, we quantified the reproducibility of pRF mapping results within and across sessions in case of central visual field loss in a group of 15 human subjects. We simulated scotoma by masking a central area of 2° radius from stimulation to establish ground-truth conditions. This study was performed on a 7T ultra-high field MRI scanner for increased sensitivity. We found excellent intrasession and intersession reproducibility for the pRF center position (Spearman correlation coefficients for x, y: .0.95; eccentricity: .0.87; polar angle: .0.98), but only modest reproducibility for pRF size (Spearman correlation coefficients around 0.4). We further examined the scotoma detection performance using an automated method based on a reference dataset acquired with full-field stimulation. For the 2° artificial scotoma, the group-averaged scotoma sizes were estimated at between 1.92° and 2.19° for different sessions. We conclude that pRF mapping of visual field losses yields robust, reproducible measures of retinal function and suggest the use of pRF mapping as an objective method for monitoring visual deficits during therapeutic interventions or disease progression.Austrian Science Fund (FWF) P35583; P33180; KLI670 Eusko Jaurlaritza (Gobierno Vasco) BERC 2022-2025 Spanish State Research Agency CEX2020-001010-S Spanish Ministry of Science and Innovation IJC2020-042887-

    Visual Field Reconstruction Using fMRI-Based Techniques

    Get PDF
    Purpose: To evaluate the accuracy and reliability of functional magnetic resonance imaging (fMRI)-based techniques to assess the integrity of the visual field (VF). Methods: We combined 3T fMRI and neurocomputational models, that is, conventional population receptive field (pRF) mapping and a new advanced pRF framework "microprobing" (MP), to reconstruct the VF representations of different cortical areas. To demonstrate their scope, both approaches were applied in healthy participants with simulated scotomas and participants with glaucoma. For the latter group we compared the VFs obtained with standard automated perimetry (SAP) and via fMRI. Results: Using SS, we found that the fMRI-based techniques can detect absolute defects in VFs that are larger than 3°, in single participants, based on 12 minutes of fMRI scan time. Moreover, we found that the MP approach results in a less biased estimation of the preserved VF. In participants with glaucoma, we found that fMRI-based VF reconstruction detected VF defects with a correspondence to SAP that was decent, reflected by the positive correlation between fMRI-based sampling density and SAP-based contrast sensitivity loss (SAP) r2 = 0.44, P = 0.0002. This correlation was higher for MP compared to that for the conventional pRF analysis. Conclusions: The fMRI-based reconstruction of the VF enables the evaluation of vision loss and provides useful details on the properties of the visual cortex. Translational Relevance: The fMRI-based VF reconstruction provides an objective alternative to detect VF defects. It may either complement SAP or could provide VF information in patients unable to perform SAP

    Position representations of moving objects align with real-time position in the early visual response

    Get PDF
    When interacting with the dynamic world, the brain receives outdated sensory information, due to the time required for neural transmission and processing. In motion perception, the brain may overcome these fundamental delays through predictively encoding the position of moving objects using information from their past trajectories. In the present study, we evaluated this proposition using multivariate analysis of high temporal resolution electroencephalographic data. We tracked neural position representations of moving objects at different stages of visual processing, relative to the real-time position of the object. During early stimulus-evoked activity, position representations of moving objects were activated substantially earlier than the equivalent activity evoked by unpredictable flashes, aligning the earliest representations of moving stimuli with their real-time positions. These findings indicate that the predictability of straight trajectories enables full compensation for the neural delays accumulated early in stimulus processing, but that delays still accumulate across later stages of cortical processing

    Larger Extrastriate Population Receptive Fields in Autism Spectrum Disorders

    Full text link

    Predictive masking of an artificial scotoma is associated with a system-wide reconfiguration of neural populations in the human visual cortex

    Get PDF
    The visual brain has the remarkable capacity to complete our percept of the world even when the information extracted from the visual scene is incomplete. This ability to predict missing information based on information from spatially adjacent regions is an intriguing attribute of healthy vision. Yet, it gains particular significance when it masks the perceptual consequences of a retinal lesion, leaving patients unaware of their partial loss of vision and ultimately delaying diagnosis and treatment. At present, our understanding of the neural basis of this masking process is limited which hinders both quantitative modelling as well as translational application. To overcome this, we asked the participants to view visual stimuli with and without superimposed artificial scotoma (AS). We used fMRI to record the associated cortical activity and applied model-based analyses to track changes in cortical population receptive fields and connectivity in response to the introduction of the AS. We found that throughout the visual field and cortical hierarchy, pRFs shifted their preferred position towards the AS border. Moreover, extrastriate areas biased their sampling of V1 towards sections outside the AS projection zone, thereby effectively masking the AS with signals from spared portions of the visual field. We speculate that the signals that drive these system-wide population modifications originate in extrastriate visual areas and, through feedback, also reconfigure the neural populations in the earlier visual areas

    Studying Cortical Plasticity in Ophthalmic and Neurological Disorders:From Stimulus-Driven to Cortical Circuitry Modeling Approaches

    Get PDF
    Unsolved questions in computational visual neuroscience research are whether and how neurons and their connecting cortical networks can adapt when normal vision is compromised by a neurodevelopmental disorder or damage to the visual system. This question on neuroplasticity is particularly relevant in the context of rehabilitation therapies that attempt to overcome limitations or damage, through either perceptual training or retinal and cortical implants. Studies on cortical neuroplasticity have generally made the assumption that neuronal population properties and the resulting visual field maps are stable in healthy observers. Consequently, differences in the estimates of these properties between patients and healthy observers have been taken as a straightforward indication for neuroplasticity. However, recent studies imply that the modeled neuronal properties and the cortical visual maps vary substantially within healthy participants, e.g., in response to specific stimuli or under the influence of cognitive factors such as attention. Although notable advances have been made to improve the reliability of stimulus-driven approaches, the reliance on the visual input remains a challenge for the interpretability of the obtained results. Therefore, we argue that there is an important role in the study of cortical neuroplasticity for approaches that assess intracortical signal processing and circuitry models that can link visual cortex anatomy, function, and dynamics

    Contextual modulations of visual perception and visual cortex activity in humans

    Get PDF
    Visual perception and neural processing depend on more than retinal stimulation alone. They are modulated by contextual factors like cross-modal input, the current focus of attention or previous experience. In this thesis I investigate ways in which these factors affect vision. A first series of experiments investigates how co-occurring sounds modulate vision, with an emphasis on temporal aspects of visual processing. In three behavioral experiments I find that participants are unable to ignore the duration of co-occurring sounds when giving visual duration judgments. Furthermore, prolonged sound duration goes along with improved detection sensitivity for visual stimuli and thus extends beyond duration judgments per se. I go on to test a cross-modal illusion in which the perceived number of flashes in a rapid series is affected by the number of co-occurring beeps (the sound-Induced flash illusion). Combining data from structural magnetic resonance imaging (MRI) and a behavioral experiment I find that individual proneness to this illusion is linked with less grey matter volume in early visual cortex. Finally, I test how co-occurring sounds affect the cortical representation of more natural visual stimuli. A functional MRI (fMRI) experiment investigates patterns of activation evoked by short video clips in visual areas V1-3. The trial-by-trial reliability of such patterns is reduced for videos accompanied by mismatching sounds. Turning from cross-modal effects to more intrinsic sources of contextual modulation I test how attention affects visual representations in V1-3. Using fMRI and population receptive field (pRF) mapping I find that high perceptual load at fixation renders spatial tuning for the surrounding visual field coarser and goes along with pRFs being radially repelled. In a final behavioral and fMRI experiment I find that the perception of face features is modulated by retinal stimulus location. Eye and mouth stimuli are recognized better, and evoke more discriminable patterns of activation in face sensitive patches of cortex, when they are presented at canonical locations. Taken together, these experiments underscore the importance of contextual modulation for vision, reveal some previously unknown such factors and point to possible neural mechanisms underlying them. Finally, they argue for an understanding of vision as a process using all available cues to arrive at optimal estimates for the causes of sensory events
    corecore