6,701 research outputs found

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Virtual Reality and Its Application in Education

    Get PDF
    Virtual reality is a set of technologies that enables two-way communication, from computer to user and vice versa. In one direction, technologies are used to synthesize visual, auditory, tactile, and sometimes other sensory experiences in order to provide the illusion that practically non-existent things can be seen, heard, touched, or otherwise felt. In the other direction, technologies are used to adequately record human movements, sounds, or other potential input data that computers can process and use. This book contains six chapters that cover topics including definitions and principles of VR, devices, educational design principles for effective use of VR, technology education, and use of VR in technical and natural sciences

    The Effect of Augmented Reality Treatment on Learning, Cognitive Load, and Spatial Visualization Abilities

    Get PDF
    This study investigated the effects of Augmented Reality (AR) on learning, cognitive load and spatial abilities. More specifically, it measured learning gains, perceived cognitive load, and the role spatial abilities play with students engaged in an astronomy lesson about lunar phases. Research participants were 182 students from a public university in southeastern United States, and were recruited from psychology research pool. Participants were randomly assigned to two groups: (a) Augmented Reality and Text Astronomy Treatment (ARTAT); and (b) Images and Text Astronomy Treatment (ITAT). Upon entering the experimental classroom, participants were given (a) Paper Folding Test to measure their spatial abilities; (b) the Lunar Phases Concept Inventory (LPCI) pre-test; (c) lesson on Lunar Phases; (d) NASA-TLX to measure participants’ cognitive load; and (e) LPCI post-test. Statistical analysis found (a) no statistical difference for learning gains between the ARTAT and ITAT groups; (b) statistically significant difference for cognitive load; and (c) no significant difference for spatial abilities scores

    Studies of visual attention in physics problem solving

    Get PDF
    Doctor of PhilosophyDepartment of PhysicsN. Sanjay RebelloThe work described here represents an effort to understand and influence visual attention while solving physics problems containing a diagram. Our visual system is guided by two types of processes -- top-down and bottom-up. The top-down processes are internal and determined by ones prior knowledge and goals. The bottom-up processes are external and determined by features of the visual stimuli such as color, and luminance contrast. When solving physics problems both top-down and bottom-up processes are active, but to varying degrees. The existence of two types of processes opens several interesting questions for physics education. For example, how do bottom-up processes influence problem solvers in physics? Can we leverage these processes to draw attention to relevant diagram areas and improve problem-solving? In this dissertation we discuss three studies that investigate these open questions and rely on eye movements as a primary data source. We assume that eye movements reflect a person’s moment-to-moment cognitive processes, providing a window into one’s thinking. In our first study, we compared the way correct and incorrect solvers viewed relevant and novice-like elements in a physics problem diagram. We found correct solvers spent more time attending to relevant areas while incorrect solvers spent more time looking at novice-like areas. In our second study, we overlaid these problems with dynamic visual cues to help students’ redirect their attention. We found that in some cases these visual cues improved problem-solving performance and influenced visual attention. To determine more precisely how the perceptual salience of diagram elements influenced solvers’ attention, we conducted a third study where we manipulated the perceptual salience of the diagram elements via changes in luminance contrast. These changes did not influence participants’ answers or visual attention. Instead, similar to our first study, the time spent looking in various areas of the diagram was related to the correctness of an answer. These results suggest that top-down processes dominate while solving physics problems. In sum, the study of visual attention and visual cueing in particular shows that attention is an important component of physics problem-solving and can potentially be leveraged to improve student performance

    Course Description

    Get PDF

    The Free Press Vol 45 Issue 11, 12-09-2013

    Get PDF
    Holiday Issue--USM rings in the holiday season--Student involvement rises despite falling fundinghttps://digitalcommons.usm.maine.edu/free_press/1104/thumbnail.jp
    corecore