50 research outputs found

    Eyewear Computing \u2013 Augmenting the Human with Head-Mounted Wearable Assistants

    Get PDF
    The seminar was composed of workshops and tutorials on head-mounted eye tracking, egocentric vision, optics, and head-mounted displays. The seminar welcomed 30 academic and industry researchers from Europe, the US, and Asia with a diverse background, including wearable and ubiquitous computing, computer vision, developmental psychology, optics, and human-computer interaction. In contrast to several previous Dagstuhl seminars, we used an ignite talk format to reduce the time of talks to one half-day and to leave the rest of the week for hands-on sessions, group work, general discussions, and socialising. The key results of this seminar are 1) the identification of key research challenges and summaries of breakout groups on multimodal eyewear computing, egocentric vision, security and privacy issues, skill augmentation and task guidance, eyewear computing for gaming, as well as prototyping of VR applications, 2) a list of datasets and research tools for eyewear computing, 3) three small-scale datasets recorded during the seminar, 4) an article in ACM Interactions entitled \u201cEyewear Computers for Human-Computer Interaction\u201d, as well as 5) two follow-up workshops on \u201cEgocentric Perception, Interaction, and Computing\u201d at the European Conference on Computer Vision (ECCV) as well as \u201cEyewear Computing\u201d at the ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp)

    EOG-Based Human–Computer Interface: 2000–2020 Review

    Get PDF
    Electro-oculography (EOG)-based brain-computer interface (BCI) is a relevant technology influencing physical medicine, daily life, gaming and even the aeronautics field. EOG-based BCI systems record activity related to users' intention, perception and motor decisions. It converts the bio-physiological signals into commands for external hardware, and it executes the operation expected by the user through the output device. EOG signal is used for identifying and classifying eye movements through active or passive interaction. Both types of interaction have the potential for controlling the output device by performing the user's communication with the environment. In the aeronautical field, investigations of EOG-BCI systems are being explored as a relevant tool to replace the manual command and as a communicative tool dedicated to accelerating the user's intention. This paper reviews the last two decades of EOG-based BCI studies and provides a structured design space with a large set of representative papers. Our purpose is to introduce the existing BCI systems based on EOG signals and to inspire the design of new ones. First, we highlight the basic components of EOG-based BCI studies, including EOG signal acquisition, EOG device particularity, extracted features, translation algorithms, and interaction commands. Second, we provide an overview of EOG-based BCI applications in the real and virtual environment along with the aeronautical application. We conclude with a discussion of the actual limits of EOG devices regarding existing systems. Finally, we provide suggestions to gain insight for future design inquiries

    Towards Everyday Virtual Reality through Eye Tracking

    Get PDF
    Durch Entwicklungen in den Bereichen Computergrafik, Hardwaretechnologie, Perception Engineering und Mensch-Computer Interaktion, werden Virtual Reality und virtuelle Umgebungen immer mehr in unser tägliches Leben integriert. Head-Mounted Displays werden jedoch im Vergleich zu anderen mobilen Geräten, wie Smartphones und Smartwatches, noch nicht so häufig genutzt. Mit zunehmender Nutzung dieser Technologie und der Gewöhnung von Menschen an virtuelle Anwendungsszenarien ist es wahrscheinlich, dass in naher Zukunft ein alltägliches Virtual-Reality-Paradigma realisiert wird. Im Hinblick auf die Kombination von alltäglicher Virtual Reality und Head-Mounted-Displays, ist Eye Tracking eine neue Technologie, die es ermöglicht, menschliches Verhalten in Echtzeit und nicht-intrusiv zu messen. Bevor diese Technologien in großem Umfang im Alltag eingesetzt werden können, müssen jedoch noch zahlreiche Aspekte genauer erforscht werden. Zunächst sollten Aufmerksamkeits- und Kognitionsmodelle in Alltagsszenarien genau verstanden werden. Des Weiteren sind Maßnahmen zur Wahrung der Privatsphäre notwendig, da die Augen mit visuellen biometrischen Indikatoren assoziiert sind. Zuletzt sollten anstelle von Studien oder Anwendungen, die sich auf eine begrenzte Anzahl menschlicher Teilnehmer mit relativ homogenen Merkmalen stützen, Protokolle und Anwendungsfälle für eine bessere Zugänglichkeit dieser Technologie von wesentlicher Bedeutung sein. In dieser Arbeit wurde unter Berücksichtigung der oben genannten Punkte ein bedeutender wissenschaftlicher Vorstoß mit drei zentralen Forschungsbeiträgen in Richtung alltäglicher Virtual Reality unternommen. Menschliche visuelle Aufmerksamkeit und Kognition innerhalb von Virtual Reality wurden in zwei unterschiedlichen Bereichen, Bildung und Autofahren, erforscht. Die Forschung im Bildungsbereich konzentrierte sich auf die Auswirkungen verschiedener Manipulationen im Klassenraum auf das menschliche Sehverhalten, während die Forschung im Bereich des Autofahrens auf sicherheitsrelevante Fragen und Blickführung abzielte. Die Nutzerstudien in beiden Bereichen zeigen, dass Blickbewegungen signifikante Implikationen für diese alltäglichen Situationen haben. Der zweite wesentliche Beitrag fokussiert sich auf Privatsphäre bewahrendes Eye Tracking für Blickbewegungsdaten von Head-Mounted Displays. Dies beinhaltet Differential Privacy, welche zeitliche Korrelationen von Blickbewegungssignalen berücksichtigt und Privatsphäre wahrende Blickschätzung durch Verwendung eines auf randomisiertem Encoding basierenden Frameworks, welches Augenreferenzunkte verwendet. Die Ergebnisse beider Arbeiten zeigen, dass die Wahrung der Privatsphäre möglich ist und gleichzeitig der Nutzen in einem akzeptablen Bereich bleibt. Wenngleich es bisher nur wenig Forschung zu diesem Aspekt von Eye Tracking gibt, ist weitere Forschung notwendig, um den alltäglichen Gebrauch von Virtual Reality zu ermöglichen. Als letzter signifikanter Beitrag, wurde ein Blockchain- und Smart Contract-basiertes Protokoll zur Eye Tracking Datenerhebung für Virtual Reality vorgeschlagen, um Virtual Reality besser zugänglich zu machen. Die Ergebnisse liefern wertvolle Erkenntnisse für alltägliche Nutzung von Virtual Reality und treiben den aktuellen Stand der Forschung in mehrere Richtungen voran.With developments in computer graphics, hardware technology, perception engineering, and human-computer interaction, virtual reality and virtual environments are becoming more integrated into our daily lives. Head-mounted displays, however, are still not used as frequently as other mobile devices such as smart phones and watches. With increased usage of this technology and the acclimation of humans to virtual application scenarios, it is possible that in the near future an everyday virtual reality paradigm will be realized. When considering the marriage of everyday virtual reality and head-mounted displays, eye tracking is an emerging technology that helps to assess human behaviors in a real time and non-intrusive way. Still, multiple aspects need to be researched before these technologies become widely available in daily life. Firstly, attention and cognition models in everyday scenarios should be thoroughly understood. Secondly, as eyes are related to visual biometrics, privacy preserving methodologies are necessary. Lastly, instead of studies or applications utilizing limited human participants with relatively homogeneous characteristics, protocols and use-cases for making such technology more accessible should be essential. In this work, taking the aforementioned points into account, a significant scientific push towards everyday virtual reality has been completed with three main research contributions. Human visual attention and cognition have been researched in virtual reality in two different domains, including education and driving. Research in the education domain has focused on the effects of different classroom manipulations on human visual behaviors, whereas research in the driving domain has targeted safety related issues and gaze-guidance. The user studies in both domains show that eye movements offer significant implications for these everyday setups. The second substantial contribution focuses on privacy preserving eye tracking for the eye movement data that is gathered from head-mounted displays. This includes differential privacy, taking temporal correlations of eye movement signals into account, and privacy preserving gaze estimation task by utilizing a randomized encoding-based framework that uses eye landmarks. The results of both works have indicated that privacy considerations are possible by keeping utility in a reasonable range. Even though few works have focused on this aspect of eye tracking until now, more research is necessary to support everyday virtual reality. As a final significant contribution, a blockchain- and smart contract-based eye tracking data collection protocol for virtual reality is proposed to make virtual reality more accessible. The findings present valuable insights for everyday virtual reality and advance the state-of-the-art in several directions

    Proficiency-aware systems

    Get PDF
    In an increasingly digital world, technological developments such as data-driven algorithms and context-aware applications create opportunities for novel human-computer interaction (HCI). We argue that these systems have the latent potential to stimulate users and encourage personal growth. However, users increasingly rely on the intelligence of interactive systems. Thus, it remains a challenge to design for proficiency awareness, essentially demanding increased user attention whilst preserving user engagement. Designing and implementing systems that allow users to become aware of their own proficiency and encourage them to recognize learning benefits is the primary goal of this research. In this thesis, we introduce the concept of proficiency-aware systems as one solution. In our definition, proficiency-aware systems use estimates of the user's proficiency to tailor the interaction in a domain and facilitate a reflective understanding for this proficiency. We envision that proficiency-aware systems leverage collected data for learning benefit. Here, we see self-reflection as a key for users to become aware of necessary efforts to advance their proficiency. A key challenge for proficiency-aware systems is the fact that users often have a different self-perception of their proficiency. The benefits of personal growth and advancing one's repertoire might not necessarily be apparent to users, alienating them, and possibly leading to abandoning the system. To tackle this challenge, this work does not rely on learning strategies but rather focuses on the capabilities of interactive systems to provide users with the necessary means to reflect on their proficiency, such as showing calculated text difficulty to a newspaper editor or visualizing muscle activity to a passionate sportsperson. We first elaborate on how proficiency can be detected and quantified in the context of interactive systems using physiological sensing technologies. Through developing interaction scenarios, we demonstrate the feasibility of gaze- and electromyography-based proficiency-aware systems by utilizing machine learning algorithms that can estimate users' proficiency levels for stationary vision-dominant tasks (reading, information intake) and dynamic manual tasks (playing instruments, fitness exercises). Secondly, we show how to facilitate proficiency awareness for users, including design challenges on when and how to communicate proficiency. We complement this second part by highlighting the necessity of toolkits for sensing modalities to enable the implementation of proficiency-aware systems for a wide audience. In this thesis, we contribute a definition of proficiency-aware systems, which we illustrate by designing and implementing interactive systems. We derive technical requirements for real-time, objective proficiency assessment and identify design qualities of communicating proficiency through user reflection. We summarize our findings in a set of design and engineering guidelines for proficiency awareness in interactive systems, highlighting that proficiency feedback makes performance interpretable for the user.In einer zunehmend digitalen Welt schaffen technologische Entwicklungen - wie datengesteuerte Algorithmen und kontextabhängige Anwendungen - neuartige Interaktionsmöglichkeiten mit digitalen Geräten. Jedoch verlassen sich Nutzer oftmals auf die Intelligenz dieser Systeme, ohne dabei selbst auf eine persönliche Weiterentwicklung hinzuwirken. Wird ein solches Vorgehen angestrebt, verlangt dies seitens der Anwender eine erhöhte Aufmerksamkeit. Es ist daher herausfordernd, ein entsprechendes Design für Kompetenzbewusstsein (Proficiency Awareness) zu etablieren. Das primäre Ziel dieser Arbeit ist es, eine Methodik für das Design und die Implementierung von interaktiven Systemen aufzustellen, die Nutzer dabei unterstützen über ihre eigene Kompetenz zu reflektieren, um dadurch Lerneffekte implizit wahrnehmen können. Diese Arbeit stellt ein Konzept für fähigkeitsbewusste Systeme (proficiency-aware systems) vor, welche die Fähigkeiten von Nutzern abschätzen, die Interaktion entsprechend anpassen sowie das Bewusstsein der Nutzer über deren Fähigkeiten fördern. Hierzu sollten die Systeme gesammelte Daten von Nutzern einsetzen, um Lerneffekte sichtbar zu machen. Die Möglichkeit der Anwender zur Selbstreflexion ist hierbei als entscheidend anzusehen, um als Motivation zur Verbesserung der eigenen Fähigkeiten zu dienen. Eine zentrale Herausforderung solcher Systeme ist die Tatsache, dass Nutzer - im Vergleich zur Abschätzung des Systems - oft eine divergierende Selbstwahrnehmung ihrer Kompetenz haben. Im ersten Moment sind daher die Vorteile einer persönlichen Weiterentwicklung nicht unbedingt ersichtlich. Daher baut diese Forschungsarbeit nicht darauf auf, Nutzer über vorgegebene Lernstrategien zu unterrichten, sondern sie bedient sich der Möglichkeiten interaktiver Systeme, die Anwendern die notwendigen Hilfsmittel zur Verfügung stellen, damit diese selbst über ihre Fähigkeiten reflektieren können. Einem Zeitungseditor könnte beispielsweise die aktuelle Textschwierigkeit angezeigt werden, während einem passionierten Sportler dessen Muskelaktivität veranschaulicht wird. Zunächst wird herausgearbeitet, wie sich die Fähigkeiten der Nutzer mittels physiologischer Sensortechnologien erkennen und quantifizieren lassen. Die Evaluation von Interaktionsszenarien demonstriert die Umsetzbarkeit fähigkeitsbewusster Systeme, basierend auf der Analyse von Blickbewegungen und Muskelaktivität. Hierbei kommen Algorithmen des maschinellen Lernens zum Einsatz, die das Leistungsniveau der Anwender für verschiedene Tätigkeiten berechnen. Im Besonderen analysieren wir stationäre Aktivitäten, die hauptsächlich den Sehsinn ansprechen (Lesen, Aufnahme von Informationen), sowie dynamische Betätigungen, die die Motorik der Nutzer fordern (Spielen von Instrumenten, Fitnessübungen). Der zweite Teil zeigt auf, wie Systeme das Bewusstsein der Anwender für deren eigene Fähigkeiten fördern können, einschließlich der Designherausforderungen , wann und wie das System erkannte Fähigkeiten kommunizieren sollte. Abschließend wird die Notwendigkeit von Toolkits für Sensortechnologien hervorgehoben, um die Implementierung derartiger Systeme für ein breites Publikum zu ermöglichen. Die Forschungsarbeit beinhaltet eine Definition für fähigkeitsbewusste Systeme und veranschaulicht dieses Konzept durch den Entwurf und die Implementierung interaktiver Systeme. Ferner werden technische Anforderungen objektiver Echtzeitabschätzung von Nutzerfähigkeiten erforscht und Designqualitäten für die Kommunikation dieser Abschätzungen mittels Selbstreflexion identifiziert. Zusammengefasst sind die Erkenntnisse in einer Reihe von Design- und Entwicklungsrichtlinien für derartige Systeme. Insbesondere die Kommunikation, der vom System erkannten Kompetenz, hilft Anwendern, die eigene Leistung zu interpretieren

    Gaze and Peripheral Vision Analysis for Human-Environment Interaction: Applications in Automotive and Mixed-Reality Scenarios

    Get PDF
    This thesis studies eye-based user interfaces which integrate information about the user’s perceptual focus-of-attention into multimodal systems to enrich the interaction with the surrounding environment. We examine two new modalities: gaze input and output in the peripheral field of view. All modalities are considered in the whole spectrum of the mixed-reality continuum. We show the added value of these new forms of multimodal interaction in two important application domains: Automotive User Interfaces and Human-Robot Collaboration. We present experiments that analyze gaze under various conditions and help to design a 3D model for peripheral vision. Furthermore, this work presents several new algorithms for eye-based interaction, like deictic reference in mobile scenarios, for non-intrusive user identification, or exploiting the peripheral field view for advanced multimodal presentations. These algorithms have been integrated into a number of software tools for eye-based interaction, which are used to implement 15 use cases for intelligent environment applications. These use cases cover a wide spectrum of applications, from spatial interactions with a rapidly changing environment from within a moving vehicle, to mixed-reality interaction between teams of human and robots.In dieser Arbeit werden blickbasierte Benutzerschnittstellen untersucht, die Infor- mationen ¨uber das Blickfeld des Benutzers in multimodale Systeme integrieren, um neuartige Interaktionen mit der Umgebung zu erm¨oglichen. Wir untersuchen zwei neue Modalit¨aten: Blickeingabe und Ausgaben im peripheren Sichtfeld. Alle Modalit¨aten werden im gesamten Spektrum des Mixed-Reality-Kontinuums betra- chtet. Wir zeigen die Anwendung dieser neuen Formen der multimodalen Interak- tion in zwei wichtigen Dom¨anen auf: Fahrerassistenzsysteme und Werkerassistenz bei Mensch-Roboter-Kollaboration. Wir pr¨asentieren Experimente, die blickbasierte Benutzereingaben unter verschiedenen Bedingungen analysieren und helfen, ein 3D- Modell f¨ur das periphere Sehen zu entwerfen. Dar¨uber hinaus stellt diese Arbeit mehrere neue Algorithmen f¨ur die blickbasierte Interaktion vor, wie die deiktis- che Referenz in mobilen Szenarien, die nicht-intrusive Benutzeridentifikation, oder die Nutzung des peripheren Sichtfeldes f¨ur neuartige multimodale Pr¨asentationen. Diese Algorithmen sind in eine Reihe von Software-Werkzeuge integriert, mit de- nen 15 Anwendungsf¨alle f¨ur intelligente Umgebungen implementiert wurden. Diese Demonstratoren decken ein breites Anwendungsspektrum ab: von der r¨aumlichen In- teraktionen aus einem fahrenden Auto heraus bis hin zu Mixed-Reality-Interaktionen zwischen Mensch-Roboter-Teams
    corecore