12,310 research outputs found

    Hidden Pursuits: Evaluating Gaze-selection via Pursuits when the Stimuli's Trajectory is Partially Hidden

    Get PDF
    The idea behind gaze interaction using Pursuits is to leverage the human's smooth pursuit eye movements performed when following moving targets. However, humans can also anticipate where a moving target would reappear if it temporarily hides from their view. In this work, we investigate how well users can select targets using Pursuits in cases where the target's trajectory is partially invisible (HiddenPursuits): e.g., can users select a moving target that temporarily hides behind another object? Although HiddenPursuits was not studied in the context of interaction before, understanding how well users can perform HiddenPursuits presents numerous opportunities, particularly for small interfaces where a target's trajectory can cover area outside of the screen. We found that users can still select targets quickly via Pursuits even if their trajectory is up to 50% hidden, and at the expense of longer selection times when the hidden portion is larger. We discuss how gaze-based interfaces can leverage HiddenPursuits for an improved user experience

    Effects of age and eccentricity on visual target detection

    Get PDF
    The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ±90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity). The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. One hundred and seventeen healthy subjects (mean age = 49.63 years, SD = 17.40 years, age range 20–78 years) were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance

    Analog VLSI-Based Modeling of the Primate Oculomotor System

    Get PDF
    One way to understand a neurobiological system is by building a simulacrum that replicates its behavior in real time using similar constraints. Analog very large-scale integrated (VLSI) electronic circuit technology provides such an enabling technology. We here describe a neuromorphic system that is part of a long-term effort to understand the primate oculomotor system. It requires both fast sensory processing and fast motor control to interact with the world. A one-dimensional hardware model of the primate eye has been built that simulates the physical dynamics of the biological system. It is driven by two different analog VLSI chips, one mimicking cortical visual processing for target selection and tracking and another modeling brain stem circuits that drive the eye muscles. Our oculomotor plant demonstrates both smooth pursuit movements, driven by a retinal velocity error signal, and saccadic eye movements, controlled by retinal position error, and can reproduce several behavioral, stimulation, lesion, and adaptation experiments performed on primates

    Multimodal Representation of Space in the Posterior Parietal Cortex and its use in Planning Movements

    Get PDF
    Recent experiments are reviewed that indicate that sensory signals from many modalities, as well as efference copy signals from motor structures, converge in the posterior parietal cortex in order to code the spatial locations of goals for movement. These signals are combined using a specific gain mechanism that enables the different coordinate frames of the various input signals to be combined into common, distributed spatial representations. These distributed representations can be used to convert the sensory locations of stimuli into the appropriate motor coordinates required for making directed movements. Within these spatial representations of the posterior parietal cortex are neural activities related to higher cognitive functions, including attention. We review recent studies showing that the encoding of intentions to make movements is also among the cognitive functions of this area

    Social Saliency: Visual Psychophysics and Single-Neuron Recordings in Humans

    Get PDF
    My thesis studies how people pay attention to other people and the environment. How does the brain figure out what is important and what are the neural mechanisms underlying attention? What is special about salient social cues compared to salient non-social cues? In Chapter I, I review social cues that attract attention, with an emphasis on the neurobiology of these social cues. I also review neurological and psychiatric links: the relationship between saliency, the amygdala and autism. The first empirical chapter then begins by noting that people constantly move in the environment. In Chapter II, I study the spatial cues that attract attention during locomotion using a cued speeded discrimination task. I found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The more ecologically valid the motion features became (e.g., temporal expansion of each object, spatial depth structure implied by distribution of the size of the objects), the stronger the attentional effects. However, compared to inanimate objects and cues, people preferentially attend to animals and faces, a process in which the amygdala is thought to play an important role. To directly compare social cues and non-social cues in the same experiment and investigate the neural structures processing social cues, in Chapter III, I employ a change detection task and test four rare patients with bilateral amygdala lesions. All four amygdala patients showed a normal pattern of reliably faster and more accurate detection of animate stimuli, suggesting that advantageous processing of social cues can be preserved even without the amygdala, a key structure of the “social brain”. People not only attend to faces, but also pay attention to others’ facial emotions and analyze faces in great detail. Humans have a dedicated system for processing faces and the amygdala has long been associated with a key role in recognizing facial emotions. In Chapter IV, I study the neural mechanisms of emotion perception and find that single neurons in the human amygdala are selective for subjective judgment of others’ emotions. Lastly, people typically pay special attention to faces and people, but people with autism spectrum disorders (ASD) might not. To further study social attention and explore possible deficits of social attention in autism, in Chapter V, I employ a visual search task and show that people with ASD have reduced attention, especially social attention, to target-congruent objects in the search array. This deficit cannot be explained by low-level visual properties of the stimuli and is independent of the amygdala, but it is dependent on task demands. Overall, through visual psychophysics with concurrent eye-tracking, my thesis found and analyzed socially salient cues and compared social vs. non-social cues and healthy vs. clinical populations. Neural mechanisms underlying social saliency were elucidated through electrophysiology and lesion studies. I finally propose further research questions based on the findings in my thesis and introduce my follow-up studies and preliminary results beyond the scope of this thesis in the very last section, Future Directions

    Perception Of Visual Speed While Moving

    Get PDF
    During self-motion, the world normally appears stationary. In part, this may be due to reductions in visual motion signals during self-motion. In 8 experiments, the authors used magnitude estimation to characterize changes in visual speed perception as a result of biomechanical self-motion alone (treadmill walking), physical translation alone (passive transport), and both biomechanical self-motion and physical translation together (walking). Their results show that each factor alone produces subtractive reductions in visual speed but that subtraction is greatest with both factors together, approximating the sum of the 2 separately. The similarity of results for biomechanical and passive self-motion support H. B. Barlow\u27s (1990) inhibition theory of sensory correlation as a mechanism for implementing H. Wallach\u27s (1987) compensation for self-motion. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract

    An fMRI study of parietal cortex involvement in the visual guidance of locomotion

    Get PDF
    Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the “far road” and “near road” mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved
    • …
    corecore