301 research outputs found

    Extremum Seeking-based Iterative Learning Linear MPC

    Full text link
    In this work we study the problem of adaptive MPC for linear time-invariant uncertain models. We assume linear models with parametric uncertainties, and propose an iterative multi-variable extremum seeking (MES)-based learning MPC algorithm to learn on-line the uncertain parameters and update the MPC model. We show the effectiveness of this algorithm on a DC servo motor control example.Comment: To appear at the IEEE MSC 201

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    Model-Guided Data-Driven Optimization and Control for Internal Combustion Engine Systems

    Get PDF
    The incorporation of electronic components into modern Internal Combustion, IC, engine systems have facilitated the reduction of fuel consumption and emission from IC engine operations. As more mechanical functions are being replaced by electric or electronic devices, the IC engine systems are becoming more complex in structure. Sophisticated control strategies are called in to help the engine systems meet the drivability demands and to comply with the emission regulations. Different model-based or data-driven algorithms have been applied to the optimization and control of IC engine systems. For the conventional model-based algorithms, the accuracy of the applied system models has a crucial impact on the quality of the feedback system performance. With computable analytic solutions and a good estimation of the real physical processes, the model-based control embedded systems are able to achieve good transient performances. However, the analytic solutions of some nonlinear models are difficult to obtain. Even if the solutions are available, because of the presence of unavoidable modeling uncertainties, the model-based controllers are designed conservatively

    A Tutorial on Distributed Optimization for Cooperative Robotics: from Setups and Algorithms to Toolboxes and Research Directions

    Full text link
    Several interesting problems in multi-robot systems can be cast in the framework of distributed optimization. Examples include multi-robot task allocation, vehicle routing, target protection and surveillance. While the theoretical analysis of distributed optimization algorithms has received significant attention, its application to cooperative robotics has not been investigated in detail. In this paper, we show how notable scenarios in cooperative robotics can be addressed by suitable distributed optimization setups. Specifically, after a brief introduction on the widely investigated consensus optimization (most suited for data analytics) and on the partition-based setup (matching the graph structure in the optimization), we focus on two distributed settings modeling several scenarios in cooperative robotics, i.e., the so-called constraint-coupled and aggregative optimization frameworks. For each one, we consider use-case applications, and we discuss tailored distributed algorithms with their convergence properties. Then, we revise state-of-the-art toolboxes allowing for the implementation of distributed schemes on real networks of robots without central coordinators. For each use case, we discuss their implementation in these toolboxes and provide simulations and real experiments on networks of heterogeneous robots

    Wind Turbine Controls for Farm and Offshore Operation

    Get PDF
    Development of advanced control techniques is a critical measure for reducing the cost of energy for wind power generation, in terms of both enhancing energy capture and reducing fatigue load. There are two remarkable trends for wind energy. First, more and more large wind farms are developed in order to reduce the unit-power cost in installation, operation, maintenance and transmission. Second, offshore wind energy has received significant attention when the scarcity of land resource has appeared to be a major bottleneck for next level of wind penetration, especially for Europe and Asia. This dissertation study investigates on several wind turbine control issues in the context of wind farm and offshore operation scenarios. Traditional wind farm control strategies emphasize the effect of the deficit of average wind speed, i.e. on how to guarantee the power quality from grid integration angle by the control of the electrical systems or maximize the energy capture of the whole wind farm by optimizing the setting points of rotor speed and blade pitch angle, based on the use of simple wake models, such as Jensen wake model. In this study, more complex wake models including detailed wind speed deficit distribution across the rotor plane and wake meandering are used for load reduction control of wind turbine. A periodic control scheme is adopted for individual pitch control including static wake interaction, while for the case with wake meandering considered, both a dual-mode model predictive control and a multiple model predictive control is applied to the corresponding individual pitch control problem, based on the use of the computationally efficient quadratic programming solver qpOASES. Simulation results validated the effectiveness of the proposed control schemes. Besides, as an innovative nearly model-free strategy, the nested-loop extremum seeking control (NLESC) scheme is designed to maximize energy capture of a wind farm under both steady and turbulent wind. The NLESC scheme is evaluated with a simple wind turbine array consisting of three cascaded variable-speed turbines using the SimWindFarm simulation platform. For each turbine, the torque gain is adjusted to vary/control the corresponding axial induction factor. Simulation under smooth and turbulent winds shows the effectiveness of the proposed scheme. Analysis shows that the optimal torque gain of each turbine in a cascade of turbines is invariant with wind speed if the wind direction does not change, which is supported by simulation results for smooth wind inputs. As changes of upstream turbine operation affects the downstream turbines with significant delays due to wind propagation, a cross-covariance based delay estimate is proposed as adaptive phase compensation between the dither and demodulation signals. Another subject of investigation in this research is the evaluation of an innovative scheme of actuation for stabilization of offshore floating wind turbines based on actively controlled aerodynamic vane actuators. For offshore floating wind turbines, underactuation has become a major issue and stabilization of tower/platform adds complexity to the control problem in addition to the general power/speed regulation and rotor load reduction controls. However, due to the design constraints and the significant power involved in the wind turbine structure, a unique challenge is presented to achieve low-cost, high-bandwidth and low power consumption design of actuation schemes. A recently proposed concept of vertical and horizontal vanes is evaluated to increase damping in roll motion and pitch motion, respectively. The simulation platform FAST has been modified including vertical and horizontal vane control. Simulation results validated the effectiveness of the proposed vertical and horizontal active vane actuators

    Data-Driven Control of Refrigeration System

    Get PDF

    Modélisation dynamique et commande optimale d'un système de réfrigération à base d'éjecteur

    Get PDF
    Recently, the ejector-based refrigeration system (ERS) has been widely used in the cooling industry as an appropriate alternative to the compressor-based cooling systems. However, the advantages of ERS such as the reliable operation and low operation and maintenance costs are overshadowed by its low efficiency and design complexity. In this context, this thesis presents the efforts to develop a control model enabling the ERS to operate in its optimal operational conditions. The extensive experimental studies of ERS revealed that at a fixed condenser inlet condition, there exists an optimal primary stream mass flow rate (generating pressure) that simultaneously maximizes the compression ratio (Cr) and exergy efficiency and minimizes the evaporating pressure. Then, the steady state models of the heat exchangers were developed and used to investigate the influence of the increase in generating pressure on the coefficient of performance (COP) of the system and it showed that increasing the generating pressure reduces the COP, linearly. In order to predict the choking regime of the ejector and explain the reasons of observed physical phenomenon, the 1D model of a fixed geometry ejector installed within an R245fa ERS was developed. The developed model demonstrated that the ejector operates in the subcritical mode when the generating pressure is below the Cr optimum point, while it operates in critical mode at or above the optimum generating pressure. Next, a dynamic model of the ERS was built to evaluate the ERS transient response to an increase in the primary stream mass flow rate. Since the ERS dynamics is mainly dominated by the thermal dynamics of the heat exchangers, the dynamic models of the heat exchangers were developed using the moving boundary approach and connected to the developed models of the ejector and steady state models of the pump and expansion valve to build a single dynamic model of the system. The built dynamic model of an ERS was used to estimate the time response of the system in the absence of accurate experimental data of the system’s dynamics. Finally, a control model was designed to drive an ERS towards its optimal operation condition. A self-optimizing, model-free control strategy known as Extremum seeking control (ESC) was adopted to minimize evaporating pressure in a fixed condenser thermal fluid inlet condition. The innovative ESC model named batch phasor ESC (BPESC) was proposed based on estimating the gradient by evaluating the phasor of the output, in batch time. The simulation results indicated that the designed BPESC model can seek and find the optimum evaporating pressure with good performance in terms of predicting the steady state optimal values and the convergence rates.Récemment, le système de réfrigération à éjecteur (SRE) a été largement utilisé dans l'industrie du refroidissement en tant que solution de remplacement appropriée aux systèmes de refroidissement à compresseur. Cependant, les avantages du SRE, tels que le fonctionnement fiable et les faibles couts d'exploitation et de maintenance, sont éclipsés par son faible rendement et sa complexité de conception. Dans ce contexte, ce projet de recherche de doctorat a détaillé les efforts déployés pour développer une stratégie de commande permettant au système de fonctionner dans ses conditions opérationnelles optimales. Les études expérimentales approfondies du SRE ont révélé que, dans une condition d'entrée de condensateur constante, il existe un débit massique optimal du flux primaire (générant une pression) qui maximise simultanément le taux de compression (Cr) et l'efficacité exergétique, et minimise la pression d’évaporation. Ensuite, les modèles à l’état d’équilibre des échangeurs de chaleur ont été développés et utilisés pour étudier l’influence de l’augmentation de la pression générée sur le coefficient de performance (COP) du système et il en ressort que l'augmentation de la pression génératrice réduit le COP de manière linéaire. Afin de prédire le régime d'étouffement de l'éjecteur et d'expliquer les raisons du phénomène physique observé, le modèle 1D d'un éjecteur à géométrie fixe installé dans un système SRE R245fa a été développé. Le modèle développé a démontré que l'éjecteur fonctionne en mode sous-critique lorsque la pression génératrice est inférieure au point optimal de Cr, alors qu'il fonctionne en mode critique à une pression égale ou supérieure à la pression génératrice optimale. Ensuite, un modèle dynamique du SRE a été développé pour étudier la réponse transitoire du SRE lors d’une augmentation du débit massique du flux primaire. Puisque la dynamique du SRE est principalement dominée par la dynamique thermique des échangeurs de chaleur, les modèles dynamiques des échangeurs de chaleur ont été développés à l'aide de l'approche des limites mobiles et connectés aux modèles développés de l'éjecteur et des modèles à l'état stationnaire de la pompe et de la vanne un seul modèle dynamique du système. En l’absence de données expérimentales précises sur la dynamique d’un système SRE, le modèle dynamique développé du SRE a été simulé numériquement pour étudier sa réponse temporelle. Enfin, une stratégie de commande extrêmale (ESC) a été élaboré pour régler automatiquement le SRE à ses conditions de fonctionnement optimales, c’est-à-dire pour trouver la vitesse de la pompe qui minimise la pression dans des conditions d'entrée de condenseur fixes. Afin de proposer une ESC implémentable en temps discret sur une installation réelle sujette à un bruit de mesure important et un traitement hors-ligne par trame, une nouvelle commande extrémale basée sur une approche par phaseur avec une procédure de traitement de signal par trame (BPESC) a été développée et simulée avec le modèle numérique. Les résultats de la simulation ont indiqué que le modèle BPESC peut trouver la vitesse optimale de la pompe avec de bonnes performances en termes de précision et de vitesse de convergence
    • …
    corecore