192 research outputs found

    A Robust Maximum Power Point Tracking Control Method for a PEM Fuel Cell Power System

    Get PDF
    Taking into account the limited capability of proton exchange membrane fuel cells (PEMFCs) to produce energy, it is mandatory to provide solutions, in which an efficient power produced by PEMFCs can be attained. The maximum power point tracker (MPPT) plays a considerable role in the performance improvement of the PEMFCs. Conventional MPPT algorithms showed good performances due to their simplicity and easy implementation. However, oscillations around the maximum power point and inefficiency in the case of rapid change in operating conditions are their main drawbacks. To this end, a new MPPT scheme based on a current reference estimator is presented. The main goal of this work is to keep the PEMFCs functioning at an efficient power point. This goal is achieved using the backstepping technique, which drives the DC-DC boost converter inserted between the PEMFC and the load. The stability of the proposed algorithm is demonstrated by means of Lyapunov analysis. To verify the ability of the proposed method, an extensive simulation test is executed in a Matlab-Simulink (TM) environment. Compared with the well-known proportional-integral (PI) controller, results indicate that the proposed backstepping technique offers rapid and adequate converging to the operating power point.The authors are very grateful to the UPV/EHU for its support through the projects PPGA18/04 and to the Basque Government for its support through the project ETORTEK KK-2017/00033. The authors would also like to thank the Tunisian Government for its support through the research unit UR11ES82

    Photovoltaic MPPT techniques comparative review

    Get PDF

    Extremum seeking control techniques applied to photovoltaic systems with multimodal power curves

    No full text
    International audienceThis paper proposes a modified Perturb and Observe (P&O) Extremum Seeking Control (ESC) technique in presence of multiple maxima. ESC is applied to single-phased grid-connected photovoltaic (PV) arrays which have to provide maximum power irrespective of solar irradiance conditions. In particular, partially shadow conditions may lead to steady-state power curves exhibiting multiple maxima. The power harvested from the PV generator is injected in the single-phased power grid by using two power converter stages: step-up DC-DC converter and DC-AC inverter. When multiple power maxima exist, the amplitude of the perturbation signal plays an important role in successfully tracking the global maximum. Two amplitude modulation strategies are analyzed for the same case study: amplitude modulation by using a first-order-system-response signal and amplitude modulation by using small duty ratio square-wave signal, respectively. MATLAB®/Simulink® numerical simulations are presented in order to assess the two approaches comparatively

    Improved Enhanced Version Of Solar Photo Voltaic System

    Full text link
    The photovoltaic (PV) panel depends on irradiance, temperature and load.The power produced in this system is not optimal. Hence, maximum power is extracted from PV array. MPPT varies the electrical operating point of the PV modul es which delivers maximum available power. A new model designed that uses open circuit voltage and short circuit current, sampled from a reference PV Panel. Using these measurements the maximum power is been tracked from main panel without breaking the power transferred to load. A DC-DC converter was used to transfer maximum powernbsp between source and load

    Design and Implementation of Control Techniques of Power Electronic Interfaces for Photovoltaic Power Systems

    Get PDF
    The aim of this thesis is to scrutinize and develop four state-of-the-art power electronics converter control techniques utilized in various photovoltaic (PV) power conversion schemes accounting for maximum power extraction and efficiency. First, Cascade Proportional and Integral (PI) Controller-Based Robust Model Reference Adaptive Control (MRAC) of a DC-DC boost converter has been designed and investigated. Non-minimum phase behaviour of the boost converter due to right half plane zero constitutes a challenge and its non-linear dynamics complicate the control process while operating in continuous conduction mode (CCM). The proposed control scheme efficiently resolved complications and challenges by using features of cascade PI control loop in combination with properties of MRAC. The accuracy of the proposed control system’s ability to track the desired signals and regulate the plant process variables in the most beneficial and optimised way without delay and overshoot is verified. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed two times with considerably improved disturbance rejection. Second, (P)roportional Gain (R)esonant and Gain Scheduled (P)roportional (PR-P) Controller has been designed and investigated. The aim of this controller is to create a variable perturbation size real-time adaptive perturb and observe (P&O) maximum power point tracking (MPPT) algorithm. The proposed control scheme resolved the drawbacks of conventional P&O MPPT method associated with the use of constant perturbation size that leads to a poor transient response and high continuous steady-state oscillations. The prime objective of using the PR-P controller is to utilize inherited properties of the signal produced by the controller’s resonant path and integrate it to update best estimated perturbation that represents the working principle of extremum seeking control (ESC) to use in a P&O algorithm that characterizes the overall system learning-based real time adaptive (RTA). Additionally, utilization of internal dynamics of the PR-P controller overcome the challenges namely, complexity, computational burden, implantation cost and slow tracking performance in association with commonly used soft computing intelligent systems and adaptive control strategies. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed five times with reduced steady-state oscillations around maximum power point (MPP) and more than 99% energy extracting efficiency.Third, the interleaved buck converter based photovoltaic (PV) emulator current control has been investigated. A proportional-resonant-proportional (PR-P) controller is designed to resolve the drawbacks of conventional PI controllers in terms of phase management which means balancing currents evenly between active phases to avoid thermally stressing and provide optimal ripple cancellation in the presence of parameter uncertainties. The proposed controller shows superior performance in terms of 10 times faster-converging transient response, zero steady-state error with significant reduction in current ripple. Equal load sharing that constitutes the primary concern in multi-phase converters has been achieved with the proposed controller. Implementing of robust control theory involving comprehensive time and frequency domain analysis reveals 13% improvement in the robust stability margin and 12-degree bigger phase toleration with the PR-P controller. Fourth, a symmetrical pole placement Method-based Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller has been designed and investigated. The proposed PR-P controller resolved the issues associated with the use of the PI controller which are tracking repeating control input signal with zero steady-state and mitigating the 3rd order harmonic component injected into the grid for single-phase PV systems. Additionally, the PR-P controller has overcome the drawbacks of frequency detuning in the grid and increase in the magnitude of odd number harmonics in the system that constitute the common concerns in the implementation of conventional PR controller. Moreover, the unprecedented design process based on changing notch filter dynamics with symmetrical pole placement around resonant frequency overcomes the limitations that are essentially complexity and dependency on the precisely modelled system. The verification and validation process of the proposed control schemes has been conducted using MATLAB/Simulink and implementing MATLAB/Simulink/State flow on dSPACE Real-time-interface (RTI) 1007 processor, DS2004 High-Speed A/D and CP4002 Timing and Digital I/O boards

    Advanced control and optimisation of DC-DC converters with application to low carbon technologies

    Get PDF
    Prompted by a desire to minimise losses between power sources and loads, the aim of this Thesis is to develop novel maximum power point tracking (MPPT) algorithms to allow for efficient power conversion within low carbon technologies. Such technologies include: thermoelectric generators (TEG), photovoltaic (PV) systems, fuel cells (FC) systems, wind turbines etc. MPPT can be efficiently achieved using extremum seeking control (ESC) also known as perturbation based extremum seeking control. The basic idea of an ESC is to search for an extrema in a closed loop fashion requiring only a minimum of a priori knowledge of the plant or system or a cost function. In recognition of problems that accompany ESC, such as limit cycles, convergence speed, and inability to search for global maximum in the presence local maxima this Thesis proposes novel schemes based on extensions of ESC. The first proposed scheme is a variance based switching extremum seeking control (VBS-ESC), which reduces the amplitude of the limit cycle oscillations. The second scheme proposed is a state dependent parameter extremum seeking control (SDP-ESC), which allows the exponential decay of the perturbation signal. Both the VBS-ESC and the SDP-ESC are universal adaptive control schemes that can be applied in the aforementioned systems. Both are suitable for local maxima search. The global maximum search scheme proposed in this Thesis is based on extensions of the SDP-ESC. Convergence to the global maximum is achieved by the use of a searching window mechanism which is capable of scanning all available maxima within operating range. The ability of the proposed scheme to converge to the global maximum is demonstrated through various examples. Through both simulation and experimental studies the benefit of the SDP-ESC has been consistently demonstrated

    Investigation of Some Self-Optimizing Control Problems for Net-Zero Energy Buildings

    Get PDF
    Green buildings are sustainable buildings designed to be environmentally responsible and resource efficient. The Net-Zero Energy Building (NZEB) concept is anchored on two pillars: reducing the energy consumption and enhancing the local energy generation. In other words, efficient operation of the existing building equipment and efficient power generation of building integrated renewable energy sources are two important factors of NZEB development. The heating, ventilation and air conditioning (HVAC) systems are an important class of building equipment that is responsible for large portion of building energy usage, while the building integrated photovoltaic (BIPV) system is well received as the key technology for local generation of clean power. Building system operation is a low-investment practice that aims low operation and maintenance cost. However, building HVAC and BIPV are systems subject to complicated intrinsic processes and highly variable environmental conditions and occupant behavior. Control, optimization and monitoring of such systems desire simple and effective approaches that require the least amount of model information and the use of smallest number but most robust sensor measurements. Self-optimizing control strategies promise a competitive platform for control, optimization and control integrated monitoring for building systems, and especially for the development of cost-effective NZEB. This dissertation study endorses this statement with three aspects of work relevant to building HVAC and BIPV, which could contribute several small steps towards the ramification of the self-optimizing control paradigm. This dissertation study applies self-optimizing control techniques to improve the energy efficiency of NZEB from two aspects. First, regarding the building HVAC efficiency, the dither based extremum seeking control (DESC) scheme is proposed for energy efficient operation of the chilled-water system typically used in the commercial building ventilation and air conditioning (VAC) systems. To evaluate the effectiveness of the proposed control strategy, Modelica based dynamic simulation model of chilled water chiller-tower plant is developed, which consists of a screw chiller and a mechanical-draft counter-flow wet cooling tower. The steady-state performance of the cooling tower model is validated with the experimental data in a classic paper and good agreement is observed. The DESC scheme takes the total power consumption of the chiller compressor and the tower fan as feedback, and uses the fan speed setting as the control input. The inner loop controllers for the chiller operation include two proportional-integral (PI) control loops for regulating the evaporator superheat and the chilled water temperature. Simulation was conducted on the whole dynamic simulation model with different environment conditions. The simulation results demonstrated the effectiveness of the proposed ESC strategy under abrupt changes of ambient conditions and load changes. The potential for energy savings of these cases are also evaluated. The back-calculation based anti-windup ESC is also simulated for handling the integral windup problem due to actuator saturation. Second, both maximum power point tracking (MPPT) and control integrated diagnostics are investigated for BIPV with two different extremum seeking control strategies, which both would contribute to the reduction of the cost of energy (COE). In particular, the Adaptive Extremum Seeking Control (AESC) is applied for PV MPPT, which is based on a PV model with known model structure but unknown nonlinear characteristics for the current-voltage relation. The nonlinear uncertainty is approximated by a radial basis function neural network (RBFNN). A Lyapunov based inverse optimal design technique is applied to achieve parameter estimation and gradient based extremum seeking. Simulation study is performed for scenarios of temperature change, irradiance change and combined change of temperature and irradiance. Successful results are observed for all cases. Furthermore, the AESC simulation is compared to the DESC simulation, and AESC demonstrates much faster transient responses under various scenarios of ambient changes. Many of the PV degradation mechanisms are reflected as the change of the internal resistance. A scheme of detecting the change of PV internal shunt resistance is proposed using the available signals in the DESC based MPPT with square-wave dither. The impact of the internal resistance on the transient characteristics of step responses is justified by using the small-signal transfer function analysis. Simulation study is performed for both the single-string and multi-string PV examples, and both cases have demonstrated successful results. Monotonic relationship between integral error indices and the shunt internal resistance is clearly observed. In particular, for the multi-string, the inter-channel coupling is weak, which indicates consistent monitoring for multi-string operation. The proposed scheme provides the online monitoring ability of the internal resistance condition without any additional sensor, which benefits further development of PV degradation detection techniques

    Real-Time Implementation of a New MPPT Control Method for a DC-DC Boost Converter Used in a PEM Fuel Cell Power System

    Get PDF
    settings Open AccessArticle Real-Time Implementation of a New MPPT Control Method for a DC-DC Boost Converter Used in a PEM Fuel Cell Power System by Mohamed Derbeli 1,2,* [OrcID] , Oscar Barambones 1 [OrcID] , Mohammed Yousri Silaa 1 [OrcID] and Cristian Napole 1 [OrcID] 1 Engineering School of Vitoria, University of the Basque Country UPV/EHU, Nieves Cano 12, 1006 Vitoria, Spain 2 National Engineering School of Gabes, University of Gabes, Omar Ibn-Elkhattab, 6029 Gabes, Tunisia * Author to whom correspondence should be addressed. Actuators 2020, 9(4), 105; https://doi.org/10.3390/act9040105 Received: 30 August 2020 / Revised: 25 September 2020 / Accepted: 10 October 2020 / Published: 16 October 2020 (This article belongs to the Section High Torque/Power Density Actuators) Download PDF Browse Figures Abstract Polymer electrolyte membrane (PEM) fuel cells demonstrate potential as a comprehensive and general alternative to fossil fuel. They are also considered to be the energy source of the twenty-first century. However, fuel cell systems have non-linear output characteristics because of their input variations, which causes a significant loss in the overall system output. Thus, aiming to optimize their outputs, fuel cells are usually coupled with a controlled electronic actuator (DC-DC boost converter) that offers highly regulated output voltage. High-order sliding mode (HOSM) control has been effectively used for power electronic converters due to its high tracking accuracy, design simplicity, and robustness. Therefore, this paper proposes a novel maximum power point tracking (MPPT) method based on a combination of reference current estimator (RCE) and high-order prescribed convergence law (HO-PCL) for a PEM fuel cell power system. The proposed MPPT method is implemented practically on a hardware 360W FC-42/HLC evaluation kit. The obtained experimental results demonstrate the success of the proposed method in extracting the maximum power from the fuel cell with high tracking performance.This work was partially supported by Eusko Jaurlaritza/Gobierno Vasco [grant number SMAR3NAK ELKARTEK KK-2019/00051]; the Provincial Council of Alava (DFA) [grant number CONAVAUTIN 2] (Collaboration Agreement)

    Design and experimental implementation of a hysteresis algorithm to optimize the maximum power point extracted from a photovoltaic system

    Get PDF
    In the several last years, numerous Maximum Power Point Tracking (MPPT) methods for photovoltaic (PV) systems have been proposed. An MPPT strategy is necessary to ensure the maximum power efficiency provided to the load from a PV module that is subject to external environmental perturbations such as radiance, temperature and partial shading. In this paper, a new MPPT technique is presented. Our approach has the novelty that it is a MPPT algorithm with a dynamic hysteresis model incorporated. One of the most cited Maximum Power Point Tracking methods is the Perturb and Observer algorithm since it is easily implemented. A comparison between the approach presented in this paper and the known Perturb and Observer method is evaluated. Moreover, a new PV-system platform was properly designed by employing low cost electronics, which may serve as an academical platform for further research and developments. This platform is used to show that the proposed algorithm is more efficient than the standard Perturb and Observer method.Peer ReviewedPostprint (published version

    Design of Solar System by Implementing ALO Optimized PID Based MPPT Controller

    Get PDF
    This paper is a strive approach to design offgrid solar system in association with DC-DC boost converter and MPPT. The tuned PID based MPPT technique is adopted to extract maximum power from the solar system under certain circumstances (temperature and irradiance). The design parameters of PID controller play an imperative aspect to enhance the performance of the system. Ant lion Optimizer (ALO) algorithm is adopted to optimize PID parameters to contribute relevant duty cycle for DC-DC boost converter to maximize output power and voltage. P and O based MPPT technique is implemented to validate the supremacy of PID based MPPT to enhance the response of the system. In this paper, the proposed ALO optimized PID controller based MPPT technique is performed better over conventional P & O technique by conceding the oscillation, time response, settling time and maximum values of voltage, current and power of the solar system.Citation: SAHU, R. K., and Shaw, B. (2018). Design of Solar System by Implementing ALO Optimized PID Based MPPT Controller. Trends in Renewable Energy, 4, 44-55. DOI: 10.17737/tre.2018.4.3.004
    • …
    corecore