2,196 research outputs found

    Extreme-Value Theorems for Optimal Multidimensional Pricing

    Get PDF
    Original manuscript: June 2, 2011We provide a Polynomial Time Approximation Scheme for the multi-dimensional unit-demand pricing problem, when the buyer's values are independent (but not necessarily identically distributed.) For all ϵ >; 0, we obtain a (1 + ϵ)-factor approximation to the optimal revenue in time polynomial, when the values are sampled from Monotone Hazard Rate (MHR) distributions, quasi-polynomial, when sampled from regular distributions, and polynomial in n[superscript poly(log r)] when sampled from general distributions supported on a set [u[subscript min],ru[subscript min]]. We also provide an additive PTAS for all bounded distributions. Our algorithms are based on novel extreme value theorems for MHR and regular distributions, and apply probabilistic techniques to understand the statistical properties of revenue distributions, as well as to reduce the size of the search space of the algorithm. As a byproduct of our techniques, we establish structural properties of optimal solutions. We show that, for all ϵ >; 0, g(1/ϵ) distinct prices suffice to obtain a (1 + ϵ)-factor approximation to the optimal revenue for MHR distributions, where g(1/ϵ) is a quasi-linear function of 1/ϵ that does not depend on the number of items. Similarly, for all ϵ >; 0 and n >; 0, g(1/ϵ · log n) distinct prices suffice for regular distributions, where n is the number of items and g(·) is a polynomial function. Finally, in the i.i.d. MHR case, we show that, as long as the number of items is a sufficiently large function of 1/ϵ, a single price suffices to achieve a (1 + ϵ)-factor approximation. Our results represent significant progress to the single-bidder case of the multidimensional optimal mechanism design problem, following Myerson's celebrated work on optimal mechanism design [Myerson 1981].National Science Foundation (U.S.) (Award CCF-0953960)National Science Foundation (U.S.) (Award CCF-1101491)Alfred P. Sloan Foundation (Fellowship

    Limit Theorems for Estimating the Parameters of Differentiated Product Demand Systems

    Get PDF
    We provide an asymptotic distribution theory for a class of Generalized Method of Moments estimators that arise in the study of differentiated product markets when the number of observations is associated with the number of products within a given market. We allow for three sources of error: the sampling error in estimating market shares, the simulation error in approximating the shares predicted by the model, and the underlying model error. The limiting distribution of the parameter estimator is normal provided the size of the consumer sample and the number of simulation draws grow at a large enough rate relative to the number of products. We specialise our distribution theory to the Berry, Levinsohn, and Pakes (1995) random coefficient logit model and a pure characteristic model. The required rates differ for these two frequently used demand models. A small Monte Carlo study shows that the difference in asymptotic properties of the two models are reflected in the models' small sample properties. These differences impact directly on the computational burden of the two models.Choice models, Method of moments, Random coefficients, Product differentiation

    A Diffusion Approximation for the Riskless Profit under Selling of Discrete Time Call Options

    Get PDF
    A discrete time model of a financial market is considered. We focus on the study of a guaranteed profit of an investor which arises when the stock price jumps are bounded. The limit distribution of the profit as the model becomes closer to the classical model of the geometric Brownian motion is established. It is of interest that in contrast with the discrete approximation, no guaranteed profit occurs in the approximated continuous time model.Asymptotic uniformity, Weak convergence in Skorokhod Space D[0,1]

    Coherent measurement of factor risks

    Full text link
    We propose a new procedure for the risk measurement of large portfolios. It employs the following objects as the building blocks: - coherent risk measures introduced by Artzner, Delbaen, Eber, and Heath; - factor risk measures introduced in this paper, which assess the risks driven by particular factors like the price of oil, S&P500 index, or the credit spread; - risk contributions and factor risk contributions, which provide a coherent alternative to the sensitivity coefficients. We also propose two particular classes of coherent risk measures called Alpha V@R and Beta V@R, for which all the objects described above admit an extremely simple empirical estimation procedure. This procedure uses no model assumptions on the structure of the price evolution. Moreover, we consider the problem of the risk management on a firm's level. It is shown that if the risk limits are imposed on the risk contributions of the desks to the overall risk of the firm (rather than on their outstanding risks) and the desks are allowed to trade these limits within a firm, then the desks automatically find the globally optimal portfolio
    corecore