12,922 research outputs found

    Extreme State Aggregation Beyond MDPs

    Full text link
    We consider a Reinforcement Learning setup where an agent interacts with an environment in observation-reward-action cycles without any (esp.\ MDP) assumptions on the environment. State aggregation and more generally feature reinforcement learning is concerned with mapping histories/raw-states to reduced/aggregated states. The idea behind both is that the resulting reduced process (approximately) forms a small stationary finite-state MDP, which can then be efficiently solved or learnt. We considerably generalize existing aggregation results by showing that even if the reduced process is not an MDP, the (q-)value functions and (optimal) policies of an associated MDP with same state-space size solve the original problem, as long as the solution can approximately be represented as a function of the reduced states. This implies an upper bound on the required state space size that holds uniformly for all RL problems. It may also explain why RL algorithms designed for MDPs sometimes perform well beyond MDPs.Comment: 28 LaTeX pages. 8 Theorem

    Performance Guarantees for Homomorphisms Beyond Markov Decision Processes

    Full text link
    Most real-world problems have huge state and/or action spaces. Therefore, a naive application of existing tabular solution methods is not tractable on such problems. Nonetheless, these solution methods are quite useful if an agent has access to a relatively small state-action space homomorphism of the true environment and near-optimal performance is guaranteed by the map. A plethora of research is focused on the case when the homomorphism is a Markovian representation of the underlying process. However, we show that near-optimal performance is sometimes guaranteed even if the homomorphism is non-Markovian. Moreover, we can aggregate significantly more states by lifting the Markovian requirement without compromising on performance. In this work, we expand Extreme State Aggregation (ESA) framework to joint state-action aggregations. We also lift the policy uniformity condition for aggregation in ESA that allows even coarser modeling of the true environment

    Reduction of Markov Chains using a Value-of-Information-Based Approach

    Full text link
    In this paper, we propose an approach to obtain reduced-order models of Markov chains. Our approach is composed of two information-theoretic processes. The first is a means of comparing pairs of stationary chains on different state spaces, which is done via the negative Kullback-Leibler divergence defined on a model joint space. Model reduction is achieved by solving a value-of-information criterion with respect to this divergence. Optimizing the criterion leads to a probabilistic partitioning of the states in the high-order Markov chain. A single free parameter that emerges through the optimization process dictates both the partition uncertainty and the number of state groups. We provide a data-driven means of choosing the `optimal' value of this free parameter, which sidesteps needing to a priori know the number of state groups in an arbitrary chain.Comment: Submitted to Entrop

    Ergodic Control and Polyhedral approaches to PageRank Optimization

    Full text link
    We study a general class of PageRank optimization problems which consist in finding an optimal outlink strategy for a web site subject to design constraints. We consider both a continuous problem, in which one can choose the intensity of a link, and a discrete one, in which in each page, there are obligatory links, facultative links and forbidden links. We show that the continuous problem, as well as its discrete variant when there are no constraints coupling different pages, can both be modeled by constrained Markov decision processes with ergodic reward, in which the webmaster determines the transition probabilities of websurfers. Although the number of actions turns out to be exponential, we show that an associated polytope of transition measures has a concise representation, from which we deduce that the continuous problem is solvable in polynomial time, and that the same is true for the discrete problem when there are no coupling constraints. We also provide efficient algorithms, adapted to very large networks. Then, we investigate the qualitative features of optimal outlink strategies, and identify in particular assumptions under which there exists a "master" page to which all controlled pages should point. We report numerical results on fragments of the real web graph.Comment: 39 page

    Towards Swarm Calculus: Urn Models of Collective Decisions and Universal Properties of Swarm Performance

    Full text link
    Methods of general applicability are searched for in swarm intelligence with the aim of gaining new insights about natural swarms and to develop design methodologies for artificial swarms. An ideal solution could be a `swarm calculus' that allows to calculate key features of swarms such as expected swarm performance and robustness based on only a few parameters. To work towards this ideal, one needs to find methods and models with high degrees of generality. In this paper, we report two models that might be examples of exceptional generality. First, an abstract model is presented that describes swarm performance depending on swarm density based on the dichotomy between cooperation and interference. Typical swarm experiments are given as examples to show how the model fits to several different results. Second, we give an abstract model of collective decision making that is inspired by urn models. The effects of positive feedback probability, that is increasing over time in a decision making system, are understood by the help of a parameter that controls the feedback based on the swarm's current consensus. Several applicable methods, such as the description as Markov process, calculation of splitting probabilities, mean first passage times, and measurements of positive feedback, are discussed and applications to artificial and natural swarms are reported

    Large Markov Decision Processes and Combinatorial Optimization

    Full text link
    Markov decision processes continue to gain in popularity for modeling a wide range of applications ranging from analysis of supply chains and queuing networks to cognitive science and control of autonomous vehicles. Nonetheless, they tend to become numerically intractable as the size of the model grows fast. Recent works use machine learning techniques to overcome this crucial issue, but with no convergence guarantee. This note provides a brief overview of literature on solving large Markov decision processes, and exploiting them to solve important combinatorial optimization problems
    • …
    corecore