122,178 research outputs found

    Variable interaction empirical relationships and machine learning provide complementary insight to experimental horizontal wellbore cleaning results

    Get PDF
    Long horizontal wellbore sections are now a key requirement of oil and gas drilling, particularly for tight reservoirs. However, such sections pose a unique set of borehole-cleaning challenges which are quite distinct from those associated with less inclined wellbores. Experimental studies provide essential insight into the downhole variables that influence borehole cleaning in horizontal sections, typically expressing their results in multivariate empirical relationships with dimensionless cuttings bed thickness/concentration (H%). This study demonstrates how complementary empirical H% relationships focused on pairs of influential variables can be obtained from published experimental data using interpolated trends and optimizers. It also applies five machine learning algorithms to a compiled multivariate (10-variable) interpolated dataset to illustrate how reliable H% predictions can be derived based on such information. Seven optimizer-derived empirical relationships are derived using pairs of influential variables which are capable of predicting H% with root mean squared errors of less than 1.8%. The extreme gradient boosting model provides the lowest H% prediction errors from the 10-variable dataset. The results suggest that in drilling situations where sufficient, locally-specific, information for multiple influential variables is available, machine learning methods are likely to be more effective and reliable at predicting H% than empirical relationships. On the other hand, in drilling conditions where information is only available for a limited number of influential variables, empirical relationships involving pairs of influential variables can provide valuable information to assist with drilling decisions.Document Type: Original articleCited as: Wood, D. A. Variable interaction empirical relationships and machine learning provide complementary insight to experimental horizontal wellbore cleaning results. Advances in Geo-Energy Research, 2023, 9(3): 172-184. https://doi.org/10.46690/ager.2023.09.0

    Applying machine learning to improve simulations of a chaotic dynamical system using empirical error correction

    Full text link
    Dynamical weather and climate prediction models underpin many studies of the Earth system and hold the promise of being able to make robust projections of future climate change based on physical laws. However, simulations from these models still show many differences compared with observations. Machine learning has been applied to solve certain prediction problems with great success, and recently it's been proposed that this could replace the role of physically-derived dynamical weather and climate models to give better quality simulations. Here, instead, a framework using machine learning together with physically-derived models is tested, in which it is learnt how to correct the errors of the latter from timestep to timestep. This maintains the physical understanding built into the models, whilst allowing performance improvements, and also requires much simpler algorithms and less training data. This is tested in the context of simulating the chaotic Lorenz '96 system, and it is shown that the approach yields models that are stable and that give both improved skill in initialised predictions and better long-term climate statistics. Improvements in long-term statistics are smaller than for single time-step tendencies, however, indicating that it would be valuable to develop methods that target improvements on longer time scales. Future strategies for the development of this approach and possible applications to making progress on important scientific problems are discussed.Comment: 26p, 7 figures To be published in Journal of Advances in Modeling Earth System

    Coupling Data Science Techniques and Numerical Weather Prediction Models for High-Impact Weather Prediction

    Get PDF
    Meteorologists have access to more model guidance and observations than ever before, but this additional information does not necessarily lead to better forecasts. New tools are needed to reduce the cognitive load on forecasters and to provide them with accurate, reliable consensus guidance. Techniques from the data science community, such as machine learning and image processing, have the potential to summarize and calibrate numerical weather prediction model output and to generate deterministic and probabilistic forecasts of high-impact weather. In this dissertation, I developed data-science-based approaches to improve the predictions of two high-impact weather domains: hail and solar irradiance. Both hail and solar irradiance produce large economic impacts, have non-Gaussian distributions of occurrence, are poorly observed, and are partially driven by processes too small to be resolved by numerical weather prediction models. Hail forecasts were produced with convection-allowing model output from the Center for Analysis and Prediction of Storms and National Center for Atmospheric Research ensembles. The machine learning hail forecasts were compared against storm surrogate variables and physics-based diagnostic models of hail size. Initial machine learning hail forecasts reduced size errors but struggled with predicting extreme events. By coupling the machine learning model to predicting hail size distributions and estimating the distribution parameters jointly, the machine learning methods were able to show skill and reliability in predicting both severe and significant hail. Machine learning model and data configurations for gridded solar irradiance forecasting were evaluated on two numerical modeling systems. The evaluation determined how machine learning model choice, closeness of fit to training data, training data aggregation, and interpolation method affected forecasts of clearness index at Oklahoma Mesonet sites not included in the training data. The choice of machine learning model, interpolation scheme, and loss function had the biggest impacts on performance. Errors tended to be lower at testing sites with sunnier weather and those that were closer to training sites. All of the machine learning methods produced reliable predictions but underestimated the frequency of cloudiness compared to observations
    • …
    corecore