1,444 research outputs found

    Extreme diffusion values for non-Gaussian diffusions

    Get PDF
    A new magnetic resonance imaging (MRI) model, called diffusion kurtosis imaging (DKI), was recently proposed, to characterize the non-Gaussian diffusion behaviour in tissues. DKI involves a fourth-order three-dimensional tensor and a second-order three-dimensional tensor. Similar to those in the diffusion tensor imaging (DTI) model, the extreme diffusion values and extreme directions associated to this tensor pair play important roles in DKI. In this paper, we study the properties of the extreme values and directions associated to such tensor pairs. We also present a numerical method and its preliminary computational results.postprin

    Efficient pointwise estimation based on discrete data in ergodic nonparametric diffusions

    Get PDF
    A truncated sequential procedure is constructed for estimating the drift coefficient at a given state point based on discrete data of ergodic diffusion process. A nonasymptotic upper bound is obtained for a pointwise absolute error risk. The optimal convergence rate and a sharp constant in the bounds are found for the asymptotic pointwise minimax risk. As a consequence, the efficiency is obtained of the proposed sequential procedure.Comment: Published at http://dx.doi.org/10.3150/14-BEJ655 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Dynamic density estimation with diffusive Dirichlet mixtures

    Get PDF
    We introduce a new class of nonparametric prior distributions on the space of continuously varying densities, induced by Dirichlet process mixtures which diffuse in time. These select time-indexed random functions without jumps, whose sections are continuous or discrete distributions depending on the choice of kernel. The construction exploits the widely used stick-breaking representation of the Dirichlet process and induces the time dependence by replacing the stick-breaking components with one-dimensional Wright-Fisher diffusions. These features combine appealing properties of the model, inherited from the Wright-Fisher diffusions and the Dirichlet mixture structure, with great flexibility and tractability for posterior computation. The construction can be easily extended to multi-parameter GEM marginal states, which include, for example, the Pitman--Yor process. A full inferential strategy is detailed and illustrated on simulated and real data.Comment: Published at http://dx.doi.org/10.3150/14-BEJ681 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Non-parametric Estimation of Stochastic Differential Equations with Sparse Gaussian Processes

    Get PDF
    The application of Stochastic Differential Equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a non-parametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudo-samples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behaviour of complex systems
    corecore