25,453 research outputs found

    How old are the HII Galaxies?

    Full text link
    Using a novel approach we have reanalized the question of whether the extreme star forming galaxies known as HII galaxies are truly young or rejuvenated old systems. We first present a method of inversion that applies to any monotonic function of time describing the evolution of independent events. We show that, apart from a normalization constant, the ``true'' time dependence can be recovered from the inversion of its probability density function. We applied the inversion method to the observed equivalent width of Hbeta (EW(Hbeta)) distribution for objects in the Terlevich and collaborators Spectrophotometric Catalogue of HII galaxies and found that their global history of star formation behaves much closer to the expectations of a continuos star formation model than to an instantaneous one. On the other hand, when the inversion method is applied to samples within a restricted metallicity range we find that their history of star formation behaves much closer to what the instantaneous model predicts. Our main conclusion is that, globally, the evolution of HII galaxies seems consistent with a succession of short starbursts separated by quiescent periods and that, while the emission lines trace the properties of the present burst, the underlying stellar continuum traces the whole star formation history of the galaxy. Thus, observables like the EW(Hbeta) that combine an emission line flux, i.e. a parameter pertaining to the present burst, with the continuum flux, i.e. a parameter that traces the whole history of star formation, should not be used alone to characterize the present burst.Comment: Accepted for publication in MNRA

    AFLOW-SYM: Platform for the complete, automatic and self-consistent symmetry analysis of crystals

    Get PDF
    Determination of the symmetry profile of structures is a persistent challenge in materials science. Results often vary amongst standard packages, hindering autonomous materials development by requiring continuous user attention and educated guesses. Here, we present a robust procedure for evaluating the complete suite of symmetry properties, featuring various representations for the point-, factor-, space groups, site symmetries, and Wyckoff positions. The protocol determines a system-specific mapping tolerance that yields symmetry operations entirely commensurate with fundamental crystallographic principles. The self consistent tolerance characterizes the effective spatial resolution of the reported atomic positions. The approach is compared with the most used programs and is successfully validated against the space group information provided for over 54,000 entries in the Inorganic Crystal Structure Database. Subsequently, a complete symmetry analysis is applied to all 1.7++ million entries of the AFLOW data repository. The AFLOW-SYM package has been implemented in, and made available for, public use through the automated, ab-initio\textit{ab-initio} framework AFLOW.Comment: 24 pages, 6 figure

    Maser Flare Simulations from Oblate and Prolate Clouds

    Full text link
    We investigated, through numerical models, the flaring variability that may arise from the rotation of maser clouds of approximately spheroidal geometry, ranging from strongly oblate to strongly prolate examples. Inversion solutions were obtained for each of these examples over a range of saturation levels from unsaturated to highly saturated. Formal solutions were computed for rotating clouds with many randomly chosen rotation axes, and corresponding averaged maser light curves plotted with statistical information. The dependence of results on the level of saturation and on the degree of deformation from the spherical case were investigated in terms of a variability index and duty cycle. It may be possible to distinguish observationally between flares from oblate and prolate objects. Maser flares from rotation are limited to long timescales (at least a few years) and modest values of the variability index (â‰Č100\lesssim 100), and can be aperiodic or quasi-periodic. Rotation is therefore not a good model for H2_2O variability on timescales of weeks to months, or of truly periodic flares.Comment: 11 pages, 12 figures, accepted for publication in MNRA

    The ESO Nearby Abell Cluster Survey. XIII. The orbits of the different types of galaxies in rich clusters

    Get PDF
    We study the orbits of the various types of galaxies observed in the ESO Nearby Abell Cluster Survey. Galaxies within and outside substructures are considered separately. We use the mass profile we determined from the distribution and kinematics of the early-type galaxies (i.e. ellipticals, excluding the brightest ones, and S0s) outside substructures; the latter were assumed to be on isotropic orbits, which is supported by the shape of their velocity distribution. The projected distribution and kinematics of the galaxies of other types are used to search for equilibrium solutions in the gravitational potential derived from the early-type galaxies, using the method described by Binney and Mamon as implemented by Solanes and Salvador-Sole'. For the brightest ellipticals we are not able to construct equilibrium solutions. This is most likely the result of the formation history and the special location of these galaxies at the centres of their clusters. The data for the early spirals allow equilibrium solutions and are consistent with isotropic orbits, although there is an apparent radial anisotropy at about 0.45 r200. For the late spirals an equilibrium solution with isotropic orbits is rejected by the data. The orbits are nearly isotropic within about 0.7 r200, but then become increasingly radial outwards. Finally, the data for the galaxies in substructures indicate that isotropic solutions are not acceptable, and tangential orbits are indicated. We briefly discuss the possible implications of these velocity-anisotropy profiles for current ideas of the evolution and transformation of galaxies in clusters. (Abridged)Comment: A&A, accepted. 13 pages, 10 figure

    The magnetic field topology and chemical abundance distributions of the Ap star HD 32633

    Full text link
    Previous observations of the Ap star HD 32633 indicated that its magnetic field was unusually complex in nature and could not be characterised by a simple dipolar structure. Here we derive magnetic field maps and chemical abundance distributions for this star using full Stokes vector (Stokes IQUVIQUV) high-resolution observations obtained with the ESPaDOnS and Narval spectropolarimeters. Our maps, produced using the Invers10 magnetic Doppler imaging (MDI) code, show that HD 32633 has a strong magnetic field which features two large regions of opposite polarity but deviates significantly from a pure dipole field. We use a spherical harmonic expansion to characterise the magnetic field and find that the harmonic energy is predominately in the ℓ=1\ell=1 and ℓ=2\ell=2 poloidal modes with a small toroidal component. At the same time, we demonstrate that the observed Stokes parameter profiles of HD 32633 cannot be fully described by either a dipolar or dipolar plus quadrupolar field geometry. We compare the magnetic field topology of HD 32633 with other early-type stars for which MDI analyses have been performed, supporting a trend of increasing field complexity with stellar mass. We then compare the magnetic field topology of HD 32633 with derived chemical abundance maps for the elements Mg, Si, Ti, Cr, Fe, Ni and Nd. We find that the iron-peak elements show similar distributions, but we are unable to find a clear correlation between the location of local chemical enhancements or depletions and the magnetic field structure.Comment: 15 pages, 11 figures, accepted for publication in MNRA
    • 

    corecore