434 research outputs found

    Comparative Evaluation of VAEs, VAE-GANs and AAEs for Anomaly Detection in Network Intrusion Data

    Get PDF
    With cyberattacks growing in frequency and sophistication, effective anomaly detection is critical for securing networks and systems. This study provides a comparative evaluation of deep generative models for detecting anomalies in network intrusion data. The key objective is to determine the most accurate model architecture. Variational autoencoders (VAEs), VAE-GANs, and adversarial autoencoders (AAEs) are tested on the NSL-KDD dataset containing normal traffic and different attack types. Results show that AAEs significantly outperform VAEs and VAE-GANs, achieving AUC scores up to 0.96 and F1 scores of 0.76 on novel attacks. The adversarial regularization of AAEs enables superior generalization capabilities compared to standard VAEs. VAE-GANs exhibit better accuracy than VAEs, demonstrating the benefits of adversarial training. However, VAE-GANs have higher computational requirements. The findings provide strong evidence that AAEs are the most effective deep anomaly detection technique for intrusion detection systems. This study delivers novel insights into optimizing deep learning architectures for cyber defense. The comparative evaluation methodology and results will aid researchers and practitioners in selecting appropriate models for operational network security

    Features Dimensionality Reduction Approaches for Machine Learning Based Network Intrusion Detection

    Get PDF
    The security of networked systems has become a critical universal issue that influences individuals, enterprises and governments. The rate of attacks against networked systems has increased dramatically, and the tactics used by the attackers are continuing to evolve. Intrusion detection is one of the solutions against these attacks. A common and effective approach for designing Intrusion Detection Systems (IDS) is Machine Learning. The performance of an IDS is significantly improved when the features are more discriminative and representative. This study uses two feature dimensionality reduction approaches: (i) Auto-Encoder (AE): an instance of deep learning, for dimensionality reduction, and (ii) Principle Component Analysis (PCA). The resulting low-dimensional features from both techniques are then used to build various classifiers such as Random Forest (RF), Bayesian Network, Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) for designing an IDS. The experimental findings with low-dimensional features in binary and multi-class classification show better performance in terms of Detection Rate (DR), F-Measure, False Alarm Rate (FAR), and Accuracy. This research effort is able to reduce the CICIDS2017 dataset’s feature dimensions from 81 to 10, while maintaining a high accuracy of 99.6% in multi-class and binary classification. Furthermore, in this paper, we propose a Multi-Class Combined performance metric CombinedMc with respect to class distribution to compare various multi-class and binary classification systems through incorporating FAR, DR, Accuracy, and class distribution parameters. In addition, we developed a uniform distribution based balancing approach to handle the imbalanced distribution of the minority class instances in the CICIDS2017 network intrusion dataset.http://dx.doi.org/10.3390/electronics803032

    DoS and DDoS mitigation using Variational Autoencoders

    Get PDF
    DoS and DDoS attacks have been growing in size and number over the last decade and existing solutions to mitigate these attacks are largely inefficient. Compared to other types of malicious cyber attacks, DoS and DDoS attacks are particularly challenging to combat. Because of their ability to mask themselves as legitimate traffic, it has proven difficult to develop methods to detect these types of attacks on a packet or flow level. In this paper, we explore the potential of Variational Autoencoders to serve as a component within an intelligent security solution that differentiates between normal and malicious traffic. The motivation behind resorting to Variational Autoencoders is that unlike normal encoders that would code an input flow as a single point, they encode a flow as a distribution over the latent space which avoids overfitting. Intuitively, this allows a Variational Autoencoder to not only learn latent representations of seen input features, but to generalize in a way that allows for an interpretation of unseen flows and flow features with slight variations. Two methods based on the ability of Variational Autoencoders to learn latent representations from network traffic flows of both benign and malicious traffic, are proposed. The first method resorts to a classifier based on the latent encodings obtained from Variational Autoencoders learned from traffic traces. The second method is an anomaly detection method, where the Variational Autoencoder is used to learn the abstract feature representations of exclusively legitimate traffic. Anomalies are then filtered out by relying on the reconstruction loss of the Variational Autoencoder. In this sense, the construction loss of the autoencoder is fed as input to a classifier that outputs the class of the traffic including benign and malign, and eventually the attack type. Thus, the second approach operates with two separate training processes on two separate data sources: the first training involving only legitimate traffic, and the second training involving all traffic classes. This is different from the first approach which operates only a single training process on the whole traffic dataset. Thus, the autoencoder of the first approach aspires to learn a general feature representation of the flows while the autoencoder of the second approach aims to exclusively learn a representation of the benign traffic. The second approach is thus more susceptible to finding zero day attacks and discovering new attacks as anomalies. Both of the proposed methods have been thoroughly tested on two separate datasets with a similar feature space. The results show that both methods are promising, with the classifier-based method being slightly superior to the anomaly-based one

    Intrusion Detection: Embedded Software Machine Learning and Hardware Rules Based Co-Designs

    Get PDF
    Security of innovative technologies in future generation networks such as (Cyber Physical Systems (CPS) and Wi-Fi has become a critical universal issue for individuals, economy, enterprises, organizations and governments. The rate of cyber-attacks has increased dramatically, and the tactics used by the attackers are continuing to evolve and have become ingenious during the attacks. Intrusion Detection is one of the solutions against these attacks. One approach in designing an intrusion detection system (IDS) is software-based machine learning. Such approach can predict and detect threats before they result in major security incidents. Moreover, despite the considerable research in machine learning based designs, there is still a relatively small body of literature that is concerned with imbalanced class distributions from the intrusion detection system perspective. In addition, it is necessary to have an effective performance metric that can compare multiple multi-class as well as binary-class systems with respect to class distribution. Furthermore, the expectant detection techniques must have the ability to identify real attacks from random defects, ingrained defects in the design, misconfigurations of the system devices, system faults, human errors, and software implementation errors. Moreover, a lightweight IDS that is small, real-time, flexible and reconfigurable enough to be used as permanent elements of the system's security infrastructure is essential. The main goal of the current study is to design an effective and accurate intrusion detection framework with minimum features that are more discriminative and representative. Three publicly available datasets representing variant networking environments are adopted which also reflect realistic imbalanced class distributions as well as updated attack patterns. The presented intrusion detection framework is composed of three main modules: feature selection and dimensionality reduction, handling imbalanced class distributions, and classification. The feature selection mechanism utilizes searching algorithms and correlation based subset evaluation techniques, whereas the feature dimensionality reduction part utilizes principal component analysis and auto-encoder as an instance of deep learning. Various classifiers, including eight single-learning classifiers, four ensemble classifiers, one stacked classifier, and five imbalanced class handling approaches are evaluated to identify the most efficient and accurate one(s) for the proposed intrusion detection framework. A hardware-based approach to detect malicious behaviors of sensors and actuators embedded in medical devices, in which the safety of the patient is critical and of utmost importance, is additionally proposed. The idea is based on a methodology that transforms a device's behavior rules into a state machine to build a Behavior Specification Rules Monitoring (BSRM) tool for four medical devices. Simulation and synthesis results demonstrate that the BSRM tool can effectively identify the expected normal behavior of the device and detect any deviation from its normal behavior. The performance of the BSRM approach has also been compared with a machine learning based approach for the same problem. The FPGA module of the BSRM can be embedded in medical devices as an IDS and can be further integrated with the machine learning based approach. The reconfigurable nature of the FPGA chip adds an extra advantage to the designed model in which the behavior rules can be easily updated and tailored according to the requirements of the device, patient, treatment algorithm, and/or pervasive healthcare application

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy
    corecore