290 research outputs found

    Primitive digraphs with large exponents and slowly synchronizing automata

    Full text link
    We present several infinite series of synchronizing automata for which the minimum length of reset words is close to the square of the number of states. All these automata are tightly related to primitive digraphs with large exponent.Comment: 23 pages, 11 figures, 3 tables. This is a translation (with a slightly updated bibliography) of the authors' paper published in Russian in: Zapiski Nauchnyh Seminarov POMI [Kombinatorika i Teorija Grafov. IV], Vol. 402, 9-39 (2012), see ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v402/p009.pdf Version 2: a few typos are correcte

    From Monomials to Words to graphs

    Get PDF
    Given a finite alphabet X and an ordering on the letters, the map \sigma sends each monomial on X to the word that is the ordered product of the letter powers in the monomial. Motivated by a question on Groebner bases, we characterize ideals I in the free commutative monoid (in terms of a generating set) such that the ideal generated by \sigma(I) in the free monoid is finitely generated. Whether there exists an ordering such that is finitely generated turns out to be NP-complete. The latter problem is closely related to the recognition problem for comparability graphs.Comment: 27 pages, 2 postscript figures, uses gastex.st

    On Primitivity of Sets of Matrices

    Full text link
    A nonnegative matrix AA is called primitive if AkA^k is positive for some integer k>0k>0. A generalization of this concept to finite sets of matrices is as follows: a set of matrices M={A1,A2,,Am}\mathcal M = \{A_1, A_2, \ldots, A_m \} is primitive if Ai1Ai2AikA_{i_1} A_{i_2} \ldots A_{i_k} is positive for some indices i1,i2,...,iki_1, i_2, ..., i_k. The concept of primitive sets of matrices comes up in a number of problems within the study of discrete-time switched systems. In this paper, we analyze the computational complexity of deciding if a given set of matrices is primitive and we derive bounds on the length of the shortest positive product. We show that while primitivity is algorithmically decidable, unless P=NPP=NP it is not possible to decide primitivity of a matrix set in polynomial time. Moreover, we show that the length of the shortest positive sequence can be superpolynomial in the dimension of the matrices. On the other hand, defining P{\mathcal P} to be the set of matrices with no zero rows or columns, we give a simple combinatorial proof of a previously-known characterization of primitivity for matrices in P{\mathcal P} which can be tested in polynomial time. This latter observation is related to the well-known 1964 conjecture of Cerny on synchronizing automata; in fact, any bound on the minimal length of a synchronizing word for synchronizing automata immediately translates into a bound on the length of the shortest positive product of a primitive set of matrices in P{\mathcal P}. In particular, any primitive set of n×nn \times n matrices in P{\mathcal P} has a positive product of length O(n3)O(n^3)

    Bisimulation Metrics for Weighted Automata

    Get PDF
    We develop a new bisimulation (pseudo)metric for weighted finite automata (WFA) that generalizes Boreale\u27s linear bisimulation relation. Our metrics are induced by seminorms on the state space of WFA. Our development is based on spectral properties of sets of linear operators. In particular, the joint spectral radius of the transition matrices of WFA plays a central role. We also study continuity properties of the bisimulation pseudometric, establish an undecidability result for computing the metric, and give a preliminary account of applications to spectral learning of weighted automata

    Statistical Mechanics of Surjective Cellular Automata

    Get PDF
    Reversible cellular automata are seen as microscopic physical models, and their states of macroscopic equilibrium are described using invariant probability measures. We establish a connection between the invariance of Gibbs measures and the conservation of additive quantities in surjective cellular automata. Namely, we show that the simplex of shift-invariant Gibbs measures associated to a Hamiltonian is invariant under a surjective cellular automaton if and only if the cellular automaton conserves the Hamiltonian. A special case is the (well-known) invariance of the uniform Bernoulli measure under surjective cellular automata, which corresponds to the conservation of the trivial Hamiltonian. As an application, we obtain results indicating the lack of (non-trivial) Gibbs or Markov invariant measures for "sufficiently chaotic" cellular automata. We discuss the relevance of the randomization property of algebraic cellular automata to the problem of approach to macroscopic equilibrium, and pose several open questions. As an aside, a shift-invariant pre-image of a Gibbs measure under a pre-injective factor map between shifts of finite type turns out to be always a Gibbs measure. We provide a sufficient condition under which the image of a Gibbs measure under a pre-injective factor map is not a Gibbs measure. We point out a potential application of pre-injective factor maps as a tool in the study of phase transitions in statistical mechanical models.Comment: 50 pages, 7 figure

    On Randomized Generation of Slowly Synchronizing Automata

    Get PDF
    Motivated by the randomized generation of slowly synchronizing automata, we study automata made of permutation letters and a merging letter of rank n-1 . We present a constructive randomized procedure to generate synchronizing automata of that kind with (potentially) large alphabet size based on recent results on primitive sets of matrices. We report numerical results showing that our algorithm finds automata with much larger reset threshold than a mere uniform random generation and we present new families of automata with reset threshold of Omega(n^2/4) . We finally report theoretical results on randomized generation of primitive sets of matrices: a set of permutation matrices with a 0 entry changed into a 1 is primitive and has exponent of O(n log n) with high probability in case of uniform random distribution and the same holds for a random set of binary matrices where each entry is set, independently, equal to 1 with probability p and equal to 0 with probability 1-pwhen np-log n - > infty as n - > infty
    corecore