91 research outputs found

    Distributions of points in the unit square and large k-gons

    Get PDF
    AbstractWe consider a generalization of Heilbronn’s triangle problem by asking, given any integers n≥k, for the supremum Δk(n) of the minimum area determined by the convex hull of some k of n points in the unit square [0,1]2, where the supremum is taken over all distributions of n points in [0,1]2. Improving the lower bound Δk(n)=Ω(1/n(k−1)/(k−2)) from [C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn’s problem, SIAM Journal on Computing 30 (2000) 383–390] and from [W.M. Schmidt, On a problem of Heilbronn, Journal of the London Mathematical Society (2) 4 (1972) 545–550] for k=4, we show that Δk(n)=Ω((logn)1/(k−2)/n(k−1)/(k−2)) for fixed integers k≥3 as asked for in [C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn’s problem, SIAM Journal on Computing 30 (2000) 383–390]. Moreover, we provide a deterministic polynomial time algorithm which finds n points in [0,1]2, which achieve this lower bound on Δk(n)

    Induced Ramsey-type results and binary predicates for point sets

    Full text link
    Let kk and pp be positive integers and let QQ be a finite point set in general position in the plane. We say that QQ is (k,p)(k,p)-Ramsey if there is a finite point set PP such that for every kk-coloring cc of (Pp)\binom{P}{p} there is a subset QQ' of PP such that QQ' and QQ have the same order type and (Qp)\binom{Q'}{p} is monochromatic in cc. Ne\v{s}et\v{r}il and Valtr proved that for every kNk \in \mathbb{N}, all point sets are (k,1)(k,1)-Ramsey. They also proved that for every k2k \ge 2 and p2p \ge 2, there are point sets that are not (k,p)(k,p)-Ramsey. As our main result, we introduce a new family of (k,2)(k,2)-Ramsey point sets, extending a result of Ne\v{s}et\v{r}il and Valtr. We then use this new result to show that for every kk there is a point set PP such that no function Γ\Gamma that maps ordered pairs of distinct points from PP to a set of size kk can satisfy the following "local consistency" property: if Γ\Gamma attains the same values on two ordered triples of points from PP, then these triples have the same orientation. Intuitively, this implies that there cannot be such a function that is defined locally and determines the orientation of point triples.Comment: 22 pages, 3 figures, final version, minor correction

    Geometric Graph Theory and Wireless Sensor Networks

    Full text link
    In this work, we apply geometric and combinatorial methods to explore a variety of problems motivated by wireless sensor networks. Imagine sensors capable of communicating along straight lines except through obstacles like buildings or barriers, such that the communication network topology of the sensors is their visibility graph. Using a standard distributed algorithm, the sensors can build common knowledge of their network topology. We first study the following inverse visibility problem: What positions of sensors and obstacles define the computed visibility graph, with fewest obstacles? This is the problem of finding a minimum obstacle representation of a graph. This minimum number is the obstacle number of the graph. Using tools from extremal graph theory and discrete geometry, we obtain for every constant h that the number of n-vertex graphs that admit representations with h obstacles is 2o(n2). We improve this bound to show that graphs requiring Ω(n / log2 n) obstacles exist. We also study restrictions to convex obstacles, and to obstacles that are line segments. For example, we show that every outerplanar graph admits a representation with five convex obstacles, and that allowing obstacles to intersect sometimes decreases their required number. Finally, we study the corresponding problem for sensors equipped with GPS. Positional information allows sensors to establish common knowledge of their communication network geometry, hence we wish to compute a minimum obstacle representation of a given straight-line graph drawing. We prove that this problem is NP-complete, and provide a O(logOPT)-factor approximation algorithm by showing that the corresponding hypergraph family has bounded Vapnik-Chervonenkis dimension
    corecore