2,852 research outputs found

    Characterizing extremal digraphs for identifying codes and extremal cases of Bondy's theorem on induced subsets

    Full text link
    An identifying code of a (di)graph GG is a dominating subset CC of the vertices of GG such that all distinct vertices of GG have distinct (in)neighbourhoods within CC. In this paper, we classify all finite digraphs which only admit their whole vertex set in any identifying code. We also classify all such infinite oriented graphs. Furthermore, by relating this concept to a well known theorem of A. Bondy on set systems we classify the extremal cases for this theorem

    On the size of identifying codes in triangle-free graphs

    Get PDF
    In an undirected graph GG, a subset C⊆V(G)C\subseteq V(G) such that CC is a dominating set of GG, and each vertex in V(G)V(G) is dominated by a distinct subset of vertices from CC, is called an identifying code of GG. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph GG, let \M(G) be the minimum cardinality of an identifying code in GG. In this paper, we show that for any connected identifiable triangle-free graph GG on nn vertices having maximum degree Δ≄3\Delta\geq 3, \M(G)\le n-\tfrac{n}{\Delta+o(\Delta)}. This bound is asymptotically tight up to constants due to various classes of graphs including (Δ−1)(\Delta-1)-ary trees, which are known to have their minimum identifying code of size n−nΔ−1+o(1)n-\tfrac{n}{\Delta-1+o(1)}. We also provide improved bounds for restricted subfamilies of triangle-free graphs, and conjecture that there exists some constant cc such that the bound \M(G)\le n-\tfrac{n}{\Delta}+c holds for any nontrivial connected identifiable graph GG

    Random subgraphs make identification affordable

    Full text link
    An identifying code of a graph is a dominating set which uniquely determines all the vertices by their neighborhood within the code. Whereas graphs with large minimum degree have small domination number, this is not the case for the identifying code number (the size of a smallest identifying code), which indeed is not even a monotone parameter with respect to graph inclusion. We show that every graph GG with nn vertices, maximum degree Δ=ω(1)\Delta=\omega(1) and minimum degree Ύ≄clog⁡Δ\delta\geq c\log{\Delta}, for some constant c>0c>0, contains a large spanning subgraph which admits an identifying code with size O(nlog⁡Δή)O\left(\frac{n\log{\Delta}}{\delta}\right). In particular, if ÎŽ=Θ(n)\delta=\Theta(n), then GG has a dense spanning subgraph with identifying code O(log⁥n)O\left(\log n\right), namely, of asymptotically optimal size. The subgraph we build is created using a probabilistic approach, and we use an interplay of various random methods to analyze it. Moreover we show that the result is essentially best possible, both in terms of the number of deleted edges and the size of the identifying code

    Bounds for identifying codes in terms of degree parameters

    Full text link
    An identifying code is a subset of vertices of a graph such that each vertex is uniquely determined by its neighbourhood within the identifying code. If \M(G) denotes the minimum size of an identifying code of a graph GG, it was conjectured by F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud that there exists a constant cc such that if a connected graph GG with nn vertices and maximum degree dd admits an identifying code, then \M(G)\leq n-\tfrac{n}{d}+c. We use probabilistic tools to show that for any d≄3d\geq 3, \M(G)\leq n-\tfrac{n}{\Theta(d)} holds for a large class of graphs containing, among others, all regular graphs and all graphs of bounded clique number. This settles the conjecture (up to constants) for these classes of graphs. In the general case, we prove \M(G)\leq n-\tfrac{n}{\Theta(d^{3})}. In a second part, we prove that in any graph GG of minimum degree ÎŽ\delta and girth at least 5, \M(G)\leq(1+o_\delta(1))\tfrac{3\log\delta}{2\delta}n. Using the former result, we give sharp estimates for the size of the minimum identifying code of random dd-regular graphs, which is about log⁥ddn\tfrac{\log d}{d}n

    Strong Forms of Stability from Flag Algebra Calculations

    Get PDF
    Given a hereditary family G\mathcal{G} of admissible graphs and a function λ(G)\lambda(G) that linearly depends on the statistics of order-Îș\kappa subgraphs in a graph GG, we consider the extremal problem of determining λ(n,G)\lambda(n,\mathcal{G}), the maximum of λ(G)\lambda(G) over all admissible graphs GG of order nn. We call the problem perfectly BB-stable for a graph BB if there is a constant CC such that every admissible graph GG of order n≄Cn\ge C can be made into a blow-up of BB by changing at most C(λ(n,G)−λ(G))(n2)C(\lambda(n,\mathcal{G})-\lambda(G)){n\choose2} adjacencies. As special cases, this property describes all almost extremal graphs of order nn within o(n2)o(n^2) edges and shows that every extremal graph of order n≄n0n\ge n_0 is a blow-up of BB. We develop general methods for establishing stability-type results from flag algebra computations and apply them to concrete examples. In fact, one of our sufficient conditions for perfect stability is stated in a way that allows automatic verification by a computer. This gives a unifying way to obtain computer-assisted proofs of many new results.Comment: 44 pages; incorporates reviewers' suggestion

    Eigenvector-based identification of bipartite subgraphs

    Full text link
    We report our experiments in identifying large bipartite subgraphs of simple connected graphs which are based on the sign pattern of eigenvectors belonging to the extremal eigenvalues of different graph matrices: adjacency, signless Laplacian, Laplacian, and normalized Laplacian matrix. We compare the performance of these methods to a local switching algorithm based on the Erdos bound that each graph contains a bipartite subgraph with at least half of its edges. Experiments with one scale-free and three random graph models, which cover a wide range of real-world networks, show that the methods based on the eigenvectors of the normalized Laplacian and the adjacency matrix yield slightly better, but comparable results to the local switching algorithm. We also formulate two edge bipartivity indices based on the former eigenvectors, and observe that the method of iterative removal of edges with maximum bipartivity index until one obtains a bipartite subgraph, yields comparable results to the local switching algorithm, and significantly better results than an analogous method that employs the edge bipartivity index of Estrada and Gomez-Gardenes.Comment: 20 pages, 8 figure
    • 

    corecore