1,657 research outputs found

    An approximate version of Sidorenko's conjecture

    Get PDF
    A beautiful conjecture of Erd\H{o}s-Simonovits and Sidorenko states that if H is a bipartite graph, then the random graph with edge density p has in expectation asymptotically the minimum number of copies of H over all graphs of the same order and edge density. This conjecture also has an equivalent analytic form and has connections to a broad range of topics, such as matrix theory, Markov chains, graph limits, and quasirandomness. Here we prove the conjecture if H has a vertex complete to the other part, and deduce an approximate version of the conjecture for all H. Furthermore, for a large class of bipartite graphs, we prove a stronger stability result which answers a question of Chung, Graham, and Wilson on quasirandomness for these graphs.Comment: 12 page

    Asymptotic Structure of Graphs with the Minimum Number of Triangles

    Get PDF
    We consider the problem of minimizing the number of triangles in a graph of given order and size and describe the asymptotic structure of extremal graphs. This is achieved by characterizing the set of flag algebra homomorphisms that minimize the triangle density.Comment: 22 pages; 2 figure

    The step Sidorenko property and non-norming edge-transitive graphs

    Get PDF
    Sidorenko's Conjecture asserts that every bipartite graph H has the Sidorenko property, i.e., a quasirandom graph minimizes the density of H among all graphs with the same edge density. We study a stronger property, which requires that a quasirandom multipartite graph minimizes the density of H among all graphs with the same edge densities between its parts; this property is called the step Sidorenko property. We show that many bipartite graphs fail to have the step Sidorenko property and use our results to show the existence of a bipartite edge-transitive graph that is not weakly norming; this answers a question of Hatami [Israel J. Math. 175 (2010), 125-150].Comment: Minor correction on page

    Extremes of the internal energy of the Potts model on cubic graphs

    Get PDF
    We prove tight upper and lower bounds on the internal energy per particle (expected number of monochromatic edges per vertex) in the anti-ferromagnetic Potts model on cubic graphs at every temperature and for all q≥2q \ge 2. This immediately implies corresponding tight bounds on the anti-ferromagnetic Potts partition function. Taking the zero-temperature limit gives new results in extremal combinatorics: the number of qq-colorings of a 33-regular graph, for any q≥2q \ge 2, is maximized by a union of K3,3K_{3,3}'s. This proves the d=3d=3 case of a conjecture of Galvin and Tetali
    • …
    corecore