72 research outputs found

    Trees and graph packing

    Get PDF
    In this thesis we investigate two main topics, namely, suffix trees and graph packing problems. In Chapter 2, we present the suffix trees. The main result of this chapter is a lower bound on the size of simple suffix trees. In the rest of the thesis we deal with packing problems. In Chapter 3 we give almost tight conditions on a bipartite packing problem. In Chapter 4 we consider an embedding problem regarding degree sequences. In Chapter 5 we show the existence of bounded degree bipartite graphs with a small separator and large bandwidth and we prove that under certain conditions these graphs can be embedded into graphs with minimum degree slightly over n/2

    A friendly introduction to Fourier analysis on polytopes

    Full text link
    This book is an introduction to the nascent field of Fourier analysis on polytopes, and cones. There is a rapidly growing number of applications of these methods, so it is appropriate to invite students, as well as professionals, to the field. We assume a familiarity with Linear Algebra, and some Calculus. Of the many applications, we have chosen to focus on: (a) formulations for the Fourier transform of a polytope, (b) Minkowski and Siegel's theorems in the geometry of numbers, (c) tilings and multi-tilings of Euclidean space by translations of a polytope, (d) Computing discrete volumes of polytopes, which are combinatorial approximations to the continuous volume, (e) Optimizing sphere packings and their densities, and (f) use iterations of the divergence theorem to give new formulations for the Fourier transform of a polytope, with an application. Throughout, we give many examples and exercises, so that this book is also appropriate for a course, or for self-study.Comment: 204 pages, 46 figure

    Discrete Differential Geometry

    Get PDF
    This is the collection of extended abstracts for the 26 lectures and the open problem session at the fourth Oberwolfach workshop on Discrete Differential Geometry

    Quantum Contextuality

    Full text link
    A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics is in conflict with classical models in which the result of a measurement does not depend on which other compatible measurements are jointly performed. Here, compatible measurements are those that can be performed simultaneously or in any order without disturbance. This conflict is generically called quantum contextuality. In this article, we present an introduction to this subject and its current status. We review several proofs of the Kochen-Specker theorem and different notions of contextuality. We explain how to experimentally test some of these notions and discuss connections between contextuality and nonlocality or graph theory. Finally, we review some applications of contextuality in quantum information processing.Comment: 63 pages, 20 figures. Updated version. Comments still welcome

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    • …
    corecore