440 research outputs found

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods

    Optimizing work stealing algorithms with scheduling constraints

    Get PDF
    The fork-join paradigm of concurrent expression has gained popularity in conjunction with work-stealing schedulers. Random work-stealing schedulers have been shown to effectively perform dynamic load balancing, yielding provably-efficient schedules and space bounds on shared-memory architectures with uniform memory models. However, the advent of hierarchical, non-uniform multicore systems and large-scale distributed-memory architectures has reduced the efficacy of these scheduling policies. Furthermore, random work stealing schedulers do not exploit persistence within iterative, scientific applications. In this thesis, we prove several properties of work-stealing schedulers that enable online tracing of the tasks with very low overhead. We then describe new scheduling policies that use online schedule introspection to understand scheduler placement and thus improve the performance on NUMA and distributed-memory architectures. Finally, by incorporating an inclusive data effect system into fork--join programs with schedule placement knowledge, we show how we can transform a fork-join program to significantly improve locality

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Aeronautical Engineering. A continuing bibliography, supplement 112

    Get PDF
    This bibliography lists 424 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1979

    Aerodynamic configuration development of the highly maneuverable aircraft technology remotely piloted research vehicle

    Get PDF
    The aerodynamic development of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT/RPRV) from the conceptual design to the final configuration is presented. The design integrates several advanced concepts to achieve a high degree of transonic maneuverability, and was keyed to sustained maneuverability goals while other fighter typical performance characteristics were maintained. When tests of the baseline configuration indicated deficiencies in the technology integration and design techniques, the vehicle was reconfigured to satisfy the subcritical and supersonic requirements. Drag-due-to-lift levels only 5 percent higher than the optimum were obtained for the wind tunnel model at a lift coefficient of 1 for Mach numbers of up to 0.8. The transonic drag rise was progressively lowered with the application of nonlinear potential flow analyses coupled with experimental data
    corecore