1,305 research outputs found

    HipergrĂĄfok = Hypergraphs

    Get PDF
    A projekt cĂ©lkitƱzĂ©seit sikerĂŒlt megvalĂłsĂ­tani. A nĂ©gy Ă©v sorĂĄn több mint szĂĄz kivĂĄlĂł eredmĂ©ny szĂŒletett, amibƑl eddig 84 dolgozat jelent meg a tĂ©ma legkivĂĄlĂłbb folyĂłirataiban, mint Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, stb. SzĂĄmos rĂ©gĂłta fennĂĄllĂł sejtĂ©st bebizonyĂ­tottunk, egĂ©sz rĂ©gi nyitott problĂ©mĂĄt megoldottunk hipergrĂĄfokkal kapcsolatban illetve kapcsolĂłdĂł terĂŒleteken. A problĂ©mĂĄk nĂ©melyike sok Ă©ve, olykor több Ă©vtizede nyitott volt. Nem egy közvetlen kutatĂĄsi eredmĂ©ny, de szintĂ©n bizonyos Ă©rtĂ©kmĂ©rƑ, hogy a rĂ©sztvevƑk egyike a NorvĂ©g KirĂĄlyi AkadĂ©mia tagja lett Ă©s elnyerte a Steele dĂ­jat. | We managed to reach the goals of the project. We achieved more than one hundred excellent results, 84 of them appeared already in the most prestigious journals of the subject, like Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, etc. We proved several long standing conjectures, solved quite old open problems in the area of hypergraphs and related subjects. Some of the problems were open for many years, sometimes for decades. It is not a direct research result but kind of an evaluation too that a member of the team became a member of the Norvegian Royal Academy and won Steele Prize

    Quantum algorithm for the Boolean hidden shift problem

    Get PDF
    The hidden shift problem is a natural place to look for new separations between classical and quantum models of computation. One advantage of this problem is its flexibility, since it can be defined for a whole range of functions and a whole range of underlying groups. In a way, this distinguishes it from the hidden subgroup problem where more stringent requirements about the existence of a periodic subgroup have to be made. And yet, the hidden shift problem proves to be rich enough to capture interesting features of problems of algebraic, geometric, and combinatorial flavor. We present a quantum algorithm to identify the hidden shift for any Boolean function. Using Fourier analysis for Boolean functions we relate the time and query complexity of the algorithm to an intrinsic property of the function, namely its minimum influence. We show that for randomly chosen functions the time complexity of the algorithm is polynomial. Based on this we show an average case exponential separation between classical and quantum time complexity. A perhaps interesting aspect of this work is that, while the extremal case of the Boolean hidden shift problem over so-called bent functions can be reduced to a hidden subgroup problem over an abelian group, the more general case studied here does not seem to allow such a reduction.Comment: 10 pages, 1 figur

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlog⁥n)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(log⁥n)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlog⁥n)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    Decision support systems for logistics

    Get PDF

    Ramsey numbers of Berge-hypergraphs and related structures

    Get PDF
    For a graph G=(V,E)G=(V,E), a hypergraph H\mathcal{H} is called a Berge-GG, denoted by BGBG, if there exists a bijection f:E(G)→E(H)f: E(G) \to E(\mathcal{H}) such that for every e∈E(G)e \in E(G), e⊆f(e)e \subseteq f(e). Let the Ramsey number Rr(BG,BG)R^r(BG,BG) be the smallest integer nn such that for any 22-edge-coloring of a complete rr-uniform hypergraph on nn vertices, there is a monochromatic Berge-GG subhypergraph. In this paper, we show that the 2-color Ramsey number of Berge cliques is linear. In particular, we show that R3(BKs,BKt)=s+t−3R^3(BK_s, BK_t) = s+t-3 for s,t≄4s,t \geq 4 and max⁥(s,t)≄5\max(s,t) \geq 5 where BKnBK_n is a Berge-KnK_n hypergraph. For higher uniformity, we show that R4(BKt,BKt)=t+1R^4(BK_t, BK_t) = t+1 for t≄6t\geq 6 and Rk(BKt,BKt)=tR^k(BK_t, BK_t)=t for k≄5k \geq 5 and tt sufficiently large. We also investigate the Ramsey number of trace hypergraphs, suspension hypergraphs and expansion hypergraphs.Comment: Updated to include suggestions of the refere

    Large deviation asymptotics for occupancy problems

    Full text link
    In the standard formulation of the occupancy problem one considers the distribution of r balls in n cells, with each ball assigned independently to a given cell with probability 1/n. Although closed form expressions can be given for the distribution of various interesting quantities (such as the fraction of cells that contain a given number of balls), these expressions are often of limited practical use. Approximations provide an attractive alternative, and in the present paper we consider a large deviation approximation as r and n tend to infinity. In order to analyze the problem we first consider a dynamical model, where the balls are placed in the cells sequentially and ``time'' corresponds to the number of balls that have already been thrown. A complete large deviation analysis of this ``process level'' problem is carried out, and the rate function for the original problem is then obtained via the contraction principle. The variational problem that characterizes this rate function is analyzed, and a fairly complete and explicit solution is obtained. The minimizing trajectories and minimal cost are identified up to two constants, and the constants are characterized as the unique solution to an elementary fixed point problem. These results are then used to solve a number of interesting problems, including an overflow problem and the partial coupon collector's problem.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000013
    • 

    corecore