279 research outputs found

    Estimation of Sparse MIMO Channels with Common Support

    Get PDF
    We consider the problem of estimating sparse communication channels in the MIMO context. In small to medium bandwidth communications, as in the current standards for OFDM and CDMA communication systems (with bandwidth up to 20 MHz), such channels are individually sparse and at the same time share a common support set. Since the underlying physical channels are inherently continuous-time, we propose a parametric sparse estimation technique based on finite rate of innovation (FRI) principles. Parametric estimation is especially relevant to MIMO communications as it allows for a robust estimation and concise description of the channels. The core of the algorithm is a generalization of conventional spectral estimation methods to multiple input signals with common support. We show the application of our technique for channel estimation in OFDM (uniformly/contiguous DFT pilots) and CDMA downlink (Walsh-Hadamard coded schemes). In the presence of additive white Gaussian noise, theoretical lower bounds on the estimation of SCS channel parameters in Rayleigh fading conditions are derived. Finally, an analytical spatial channel model is derived, and simulations on this model in the OFDM setting show the symbol error rate (SER) is reduced by a factor 2 (0 dB of SNR) to 5 (high SNR) compared to standard non-parametric methods - e.g. lowpass interpolation.Comment: 12 pages / 7 figures. Submitted to IEEE Transactions on Communicatio

    Performance Analysis of Channel Extrapolation in FDD Massive MIMO Systems

    Full text link
    Channel estimation for the downlink of frequency division duplex (FDD) massive MIMO systems is well known to generate a large overhead as the amount of training generally scales with the number of transmit antennas in a MIMO system. In this paper, we consider the solution of extrapolating the channel frequency response from uplink pilot estimates to the downlink frequency band, which completely removes the training overhead. We first show that conventional estimators fail to achieve reasonable accuracy. We propose instead to use high-resolution channel estimation. We derive theoretical lower bounds (LB) for the mean squared error (MSE) of the extrapolated channel. Assuming that the paths are well separated, the LB is simplified in an expression that gives considerable physical insight. It is then shown that the MSE is inversely proportional to the number of receive antennas while the extrapolation performance penalty scales with the square of the ratio of the frequency offset and the training bandwidth. The channel extrapolation performance is validated through numeric simulations and experimental measurements taken in an anechoic chamber. Our main conclusion is that channel extrapolation is a viable solution for FDD massive MIMO systems if accurate system calibration is performed and favorable propagation conditions are present.Comment: arXiv admin note: substantial text overlap with arXiv:1902.0684

    A Survey of Dense Multipath and Its Impact on Wireless Systems

    Get PDF

    Channel Prediction for Mobile MIMO Wireless Communication Systems

    No full text
    Temporal variation and frequency selectivity of wireless channels constitute a major drawback to the attainment of high gains in capacity and reliability offered by multiple antennas at the transmitter and receiver of a mobile communication system. Limited feedback and adaptive transmission schemes such as adaptive modulation and coding, antenna selection, power allocation and scheduling have the potential to provide the platform of attaining the high transmission rate, capacity and QoS requirements in current and future wireless communication systems. Theses schemes require both the transmitter and receiver to have accurate knowledge of Channel State Information (CSI). In Time Division Duplex (TDD) systems, CSI at the transmitter can be obtained using channel reciprocity. In Frequency Division Duplex (FDD) systems, however, CSI is typically estimated at the receiver and fed back to the transmitter via a low-rate feedback link. Due to the inherent time delays in estimation, processing and feedback, the CSI obtained from the receiver may become outdated before its actual usage at the transmitter. This results in significant performance loss, especially in high mobility environments. There is therefore a need to extrapolate the varying channel into the future, far enough to account for the delay and mitigate the performance degradation. The research in this thesis investigates parametric modeling and prediction of mobile MIMO channels for both narrowband and wideband systems. The focus is on schemes that utilize the additional spatial information offered by multiple sampling of the wave-field in multi-antenna systems to aid channel prediction. The research has led to the development of several algorithms which can be used for long range extrapolation of time-varyingchannels. Based on spatial channel modeling approaches, simple and efficient methods for the extrapolation of narrowband MIMO channels are proposed. Various extensions were also developed. These include methods for wideband channels, transmission using polarized antenna arrays, and mobile-to-mobile systems. Performance bounds on the estimation and prediction error are vital when evaluating channel estimation and prediction schemes. For this purpose, analytical expressions for bound on the estimation and prediction of polarized and non-polarized MIMO channels are derived. Using the vector formulation of the Cramer Rao bound for function of parameters, readily interpretable closed-form expressions for the prediction error bounds were found for cases with Uniform Linear Array (ULA) and Uniform Planar Array (UPA). The derived performance bounds are very simple and so provide insight into system design. The performance of the proposed algorithms was evaluated using standardized channel models. The effects of the temporal variation of multipath parameters on prediction is studied and methods for jointly tracking the channel parameters are developed. The algorithms presented can be utilized to enhance the performance of limited feedback and adaptive MIMO transmission schemes

    Asymptotic Performance Bound on Estimation and Prediction of Mobile MIMO-OFDM Wireless Channels

    Get PDF

    A Tutorial on Environment-Aware Communications via Channel Knowledge Map for 6G

    Full text link
    Sixth-generation (6G) mobile communication networks are expected to have dense infrastructures, large-dimensional channels, cost-effective hardware, diversified positioning methods, and enhanced intelligence. Such trends bring both new challenges and opportunities for the practical design of 6G. On one hand, acquiring channel state information (CSI) in real time for all wireless links becomes quite challenging in 6G. On the other hand, there would be numerous data sources in 6G containing high-quality location-tagged channel data, making it possible to better learn the local wireless environment. By exploiting such new opportunities and for tackling the CSI acquisition challenge, there is a promising paradigm shift from the conventional environment-unaware communications to the new environment-aware communications based on the novel approach of channel knowledge map (CKM). This article aims to provide a comprehensive tutorial overview on environment-aware communications enabled by CKM to fully harness its benefits for 6G. First, the basic concept of CKM is presented, and a comparison of CKM with various existing channel inference techniques is discussed. Next, the main techniques for CKM construction are discussed, including both the model-free and model-assisted approaches. Furthermore, a general framework is presented for the utilization of CKM to achieve environment-aware communications, followed by some typical CKM-aided communication scenarios. Finally, important open problems in CKM research are highlighted and potential solutions are discussed to inspire future work

    From Data Inferring to Physics Representing: A Novel Mobile MIMO Channel Prediction Scheme Based on Neural ODE

    Full text link
    In this paper, we propose an innovative learning-based channel prediction scheme so as to achieve higher prediction accuracy and reduce the requirements of huge amount and strict sequential format of channel data. Inspired by the idea of the neural ordinary differential equation (Neural ODE), we first prove that the channel prediction problem can be modeled as an ODE problem with a known initial value through analyzing the physical process of electromagnetic wave propagation within a varying space. Then, we design a novel physics-inspired spatial channel gradient network (SCGNet), which represents the derivative process of channel varying as a special neural network and can obtain the gradients at any relative displacement needed for the ODE solving. With the SCGNet, the static channel at any location served by the base station is accurately inferred through consecutive propagation and integration. Finally, we design an efficient recurrent positioning algorithm based on some prior knowledge of user mobility to obtain the velocity vector, and propose an approximate Doppler compensation method to make up the instantaneous angular-delay domain channel. Only discrete historical channel data is needed for the training, whereas only a few fresh channel measurements is needed for the prediction, which ensures the scheme's practicability

    A Two-Stage 2D Channel Extrapolation Scheme for TDD 5G NR Systems

    Full text link
    Recently, channel extrapolation has been widely investigated in frequency division duplex (FDD) massive MIMO systems. However, in time division duplex (TDD) fifth generation (5G) new radio (NR) systems, the channel extrapolation problem also arises due to the hopping uplink pilot pattern, which has not been fully researched yet. This paper addresses this gap by formulating a channel extrapolation problem in TDD massive MIMO-OFDM systems for 5G NR, incorporating imperfection factors. A novel two-stage two-dimensional (2D) channel extrapolation scheme in both frequency and time domain is proposed, designed to mitigate the negative effects of imperfection factors and ensure high-accuracy channel estimation. Specifically, in the channel estimation stage, we propose a novel multi-band and multi-timeslot based high-resolution parameter estimation algorithm to achieve 2D channel extrapolation in the presence of imperfection factors. Then, to avoid repeated multi-timeslot based channel estimation, a channel tracking stage is designed during the subsequent time instants, in which a sparse Markov channel model is formulated to capture the dynamic sparsity of massive MIMO-OFDM channels under the influence of imperfection factors. Next, an expectation-maximization (EM) based compressive channel tracking algorithm is designed to jointly estimate unknown imperfection and channel parameters by exploiting the high-resolution prior information of the delay/angle parameters from the previous timeslots. Simulation results underscore the superior performance of our proposed channel extrapolation scheme over baselines
    • …
    corecore