4,298 research outputs found

    Extrapolating from limited uncertain information in large-scale combinatorial optimization problems to obtain robust solutions

    Get PDF
    Data uncertainty in real-life problems is a current challenge in many areas, including Operations Research (OR) and Constraint Programming (CP). This is especially true given the continual and accelerating increase in the amount of data associated with real life problems, to which Large Scale Combinatorial Optimization (LSCO) techniques may be applied. Although data uncertainty has been studied extensively in the literature, many approaches do not take into account the partial or complete lack of information about uncertainty in real-life settings. To meet this challenge, in this paper we present a strategy for extrapolating data from limited uncertain information to ensure a certain level of robustness in the solutions obtained. Our approach is motivated and evaluated with real-world applications of harvesting and supplying timber from forests to mills and the well known knapsack problem with uncertainty

    MODELING EXTENSIVE LIVESTOCK PRODUCTION SYSTEMS: AN APPLICATION TO SHEEP PRODUCTION IN KAZAKHSTAN

    Get PDF
    A stochastic dynamic programming model for extensive livestock systems is developed. The model optimizes sales/retention decisions when future forage production, which affects animal performance and hence profitability, is uncertain. The model is applied to sheep production in Kazakhstan to evaluate policy alternatives.Livestock Production/Industries,

    Modeling, Analysis, and Optimization Issues for Large Space Structures

    Get PDF
    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design

    An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth's mantle

    Get PDF
    Mantle convection is the fundamental physical process within earth's interior responsible for the thermal and geological evolution of the planet, including plate tectonics. The mantle is modeled as a viscous, incompressible, non-Newtonian fluid. The wide range of spatial scales, extreme variability and anisotropy in material properties, and severely nonlinear rheology have made global mantle convection modeling with realistic parameters prohibitive. Here we present a new implicit solver that exhibits optimal algorithmic performance and is capable of extreme scaling for hard PDE problems, such as mantle convection. To maximize accuracy and minimize runtime, the solver incorporates a number of advances, including aggressive multi-octree adaptivity, mixed continuous-discontinuous discretization, arbitrarily-high-order accuracy, hybrid spectral/geometric/algebraic multigrid, and novel Schur-complement preconditioning. These features present enormous challenges for extreme scalability. We demonstrate that---contrary to conventional wisdom---algorithmically optimal implicit solvers can be designed that scale out to 1.5 million cores for severely nonlinear, ill-conditioned, heterogeneous, and anisotropic PDEs
    corecore