337 research outputs found

    List decoding Reed-Muller codes over small fields

    Full text link
    The list decoding problem for a code asks for the maximal radius up to which any ball of that radius contains only a constant number of codewords. The list decoding radius is not well understood even for well studied codes, like Reed-Solomon or Reed-Muller codes. Fix a finite field F\mathbb{F}. The Reed-Muller code RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d) is defined by nn-variate degree-dd polynomials over F\mathbb{F}. In this work, we study the list decoding radius of Reed-Muller codes over a constant prime field F=Fp\mathbb{F}=\mathbb{F}_p, constant degree dd and large nn. We show that the list decoding radius is equal to the minimal distance of the code. That is, if we denote by δ(d)\delta(d) the normalized minimal distance of RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d), then the number of codewords in any ball of radius δ(d)ε\delta(d)-\varepsilon is bounded by c=c(p,d,ε)c=c(p,d,\varepsilon) independent of nn. This resolves a conjecture of Gopalan-Klivans-Zuckerman [STOC 2008], who among other results proved it in the special case of F=F2\mathbb{F}=\mathbb{F}_2; and extends the work of Gopalan [FOCS 2010] who proved the conjecture in the case of d=2d=2. We also analyse the number of codewords in balls of radius exceeding the minimal distance of the code. For ede \leq d, we show that the number of codewords of RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d) in a ball of radius δ(e)ε\delta(e) - \varepsilon is bounded by exp(cnde)\exp(c \cdot n^{d-e}), where c=c(p,d,ε)c=c(p,d,\varepsilon) is independent of nn. The dependence on nn is tight. This extends the work of Kaufman-Lovett-Porat [IEEE Inf. Theory 2012] who proved similar bounds over F2\mathbb{F}_2. The proof relies on several new ingredients: an extension of the Frieze-Kannan weak regularity to general function spaces, higher-order Fourier analysis, and an extension of the Schwartz-Zippel lemma to compositions of polynomials.Comment: fixed a bug in the proof of claim 5.6 (now lemma 5.5

    Short seed extractors against quantum storage

    Full text link
    Some, but not all, extractors resist adversaries with limited quantum storage. In this paper we show that Trevisan's extractor has this property, thereby showing an extractor against quantum storage with logarithmic seed length

    Optimal Iris Fuzzy Sketches

    Full text link
    Fuzzy sketches, introduced as a link between biometry and cryptography, are a way of handling biometric data matching as an error correction issue. We focus here on iris biometrics and look for the best error-correcting code in that respect. We show that two-dimensional iterative min-sum decoding leads to results near the theoretical limits. In particular, we experiment our techniques on the Iris Challenge Evaluation (ICE) database and validate our findings.Comment: 9 pages. Submitted to the IEEE Conference on Biometrics: Theory, Applications and Systems, 2007 Washington D
    corecore